Towards a Characterization of P Systems with Minimal Symport/Antiport and Two Membranes

Artiom Alhazov^{1,2}, Yurii Rogozhin² ¹ Institute of Mathematics and Computer Science Academy of Sciences of Moldova {artiom,rogozhin}@math.md ² Research Group on Mathematical Linguistics Rovira i Virgili University, Tarragona, Spain artiome.alhazov@estudiants.urv.cat

Key points of the systems definition

- Maximal parallelism
- Result at halting, in the elementary membrane

The power of some classes of P systems with small symport/antiport

• OP₃(sym₁,anti₁) and OP₃(sym₂) are computationally complete

• $OP_2(sym_1, anti_1)$ and $OP_2(sym_2)$ are complete modulo some additional objects

- OP₁(sym₁,anti_{2/1}) is computationally complete
- OP₁(sym₃) is complete modulo 7 additional objects

The Garbage is Unavoidable: If $\Pi \in OP_2(sym_1, anti_1)$ then $0 \in N(\Pi) \rightarrow N(\Pi) \in NFIN$

or

- Suppose N(Π) is infinite
- Suppose N(Π) contains 0: it halts
- s_0 is in region 1=> so is $s_1,..., s_n$
- contradiction

n times, n≥0

Symport Garbage: If $\Pi \in OP_2(sym_2)$ then $0 \in N(\Pi) \rightarrow N(\Pi) \in NFIN$

- Call I_0 the set of objects from O-E that we know must be in the environment at halting with empty region 2; $I_0 := \emptyset$.
- Assume N(Π) is infinite: it is necessary (though not sufficient) to bring in some object $a \in E \cup I_{0}$ (ab,in) $\in R_1$ ($b \in O$ -E).

•(b,out): cannot halt with empty region 2.

•(bc,out), $c \in O$ -E: c does not stay in the environment (otherwise it does not help increasing the number of objects inside the system).

•Still, c cannot end up in region 1 if b is there. Add c to I_0 and repeat.

•(bc,out), $c \in E$: repeat with c instead of a.

•If a system can increase the number of objects inside it, then it cannot halt without any objects in region 2.

UNIVERSALITY

Notations $: N_k RE = \{k + L \mid L \in NRE\},\$ $N_1 RE = \{N \in NRE \mid 0 \notin N\}.$ $N_{\ni 0} FIN = \{N \in NFIN \mid 0 \in N\},\$ $N_{\ni 0} SEG_1 = \{\{k \in N \mid k < n\} \mid n \ge 0\}.$

Theorem 3. $NOP_2(sym_1, anti_1) = N_1RE \cup F$, where $N_{i_0}SEG_1 \subseteq F \subseteq N_{i_0}FIN$.

Proving only $N_1 OP_2(sym_1, anti_1) = N_1 RE$

Outline of the proof

• We simulate a *d* -counter automaton $M=(d, Q, q_0, q_f, P).$

 $Q = \{q_i | 0 \le i \le f\}$ states, q_0 initial, q_f final,

P finite set of instructions.

"increment" j: $(q_i \rightarrow q_l, k+)$ "decrement" j: $(q_i \rightarrow q_l, k-)$ "test for zero" j: $(q_i \rightarrow q_l, k=0)$

Construction

Notations: C={ c_k }, k \in {1,...,d}, Q'={ q_i '}, $q_i \in Q$.

We construct the P system Π_1 as follows:

$$\begin{split} \Pi_1 &= (O, [\begin{smallmatrix} 1 & [_2 &] _2 \end{bmatrix}_1, w_1, w_2, E, R_1, R_2, 2), \\ O &= E \cup \{I_c, M, S, T_1, T_2, J_1, J_2\} \cup \{b_j, d_j \mid j \in I\}, \\ E &= Q \cup Q' \cup C \cup \{a_j, a'_j \mid j \in I\} \cup \{J_0, F_1, F_2, F_3, F_4, F_5\}, \\ w_1 &= \begin{matrix} J_1 J_2, \\ I_1 J_2, \\ \\ w_2 \\ &= \begin{matrix} T_1 T_2 M S \prod_{j \in I} b_j \prod_{j \in I} d_j \\ j \in I \end{matrix}$$

The functioning of this system may be split into three stages:

- preparation of the system for the computation.
- simulation of instructions of the counter automaton.
- terminating the computation.

Preparation

Main stage: representation

supply of states supply of instructions

Termination M **J**₂ F_2 F_3 F_4 F_5 \mathbf{F}_1 $\mathbf{q}_{\mathbf{f}}$ \mathbf{T}_2 b_j or d_j S

Conclusion

- P systems with minimal symport/antiport and two membranes: the optimal result is obtained.
 - One additional object in the output membrane is necessary and sufficient for computational completeness.
- For P systems with two membranes and symport of weight 2,
 - one object is necessary; sufficiency is open.
- It is still open what finite sets containing zero can be generated by these systems
 - Conjecture: $\{\{m|m\leq n\}n\in N\}$