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Abstract. Under the mass action law of chemical reactions, the calcu-
lations of Abstract Rewriting System on Multisets can be regarded as
linear maps. Therefore, in order to analyze the dynamical behaviors of
the system, we use the method of analyzing linear dynamical systems.
We consider the brusselator model and analyze its dynamical stability.

1 Introduction

Abstract Rewriting System on Multisets (ARMS) is a class of P Systems[6].
Since in ARMS we can model a system intuitively, it has been applied in various
fields, such as systems biology (modeling the signaling pathway of P53 protein
in a cell[4], modeling inflammation response, etc.); bio-chemistry and the sci-
ence of complexity (modeling and simulation of proto-cells which is composed of
membranes, modeling proto-enzyme networks and their evolution, etc.).

ARMS is not only a model of computation based on computational algebra
(rewriting systems) but also a hybrid model that connects between discrete sys-
tems and continuous systems; under the mass action law of chemistry, ARMS
can be regarded as a discrete expression of the master equation, which describes
chemical reactions[6]. Furthermore, if we assume the system size is large enough,
we have a continuous approximation of the ARMS[6].

In this paper, we consider the ARMS under the mass action law, where
calculations of ARMS can be regarded as sequences of linear maps and where, in
order to analyze the system, we will use methods of linear dynamical systems[3].

2 Abstract Rewriting System on Multisets, ARMS

ARMS is a model of computation of chemical reactions, in which floating molecules

can interact with each other according to given reaction rules. Technically, in
ARMS a chemical solution is a finite multiset of elements denoted by sym-
bols from a given alphabet, A = {a, b, . . . , }; these elements correspond to
molecules.Reaction rules that act on the molecules are specified in ARMS by
reaction rules.

Let A be an alphabet (a finite set of abstract symbols). A multiset over a set
of objects A is a mapping M : A 7→ N, where N is the set of natural numbers,
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N, 0, 1, 2,. . . .The number M(a), for a ∈ A, is the multiplicity of object a in
the multiset M . We denote by A# the set of all multisets over A, including the
empty multiset, ∅, defined by ∅(a) = 0 for all a ∈ A. A multiset M : A 7→ N, for
A = {a1, . . . , an} is represented by the vector w =(M(a1) M(a2) . . . M(an)).
The union of two multisets M1, M2 : A 7→ N is addition of vectors w1 and w2

that represent the each multisets respectivelly. If M1(a) ≤ M2(a) for all a ∈ A,
then we say that multiset M1 is included in multiset M2 and we write M1 ⊆ M2.

Since we consider population dynamics of molecules and a reaction rule de-
notes the population change in this paper, we define a reaction rule u → v, u, v ∈
A# is defined as a vector r, r = −u+v (it cannot express catalytic reaction such
as A + C → B + C). In general, a reaction rule is defined as the pair of vectors,
(u, v) (in general case see [6]).

A reaction is the addition of vectors M ∈ A# and r ∈ R, and it can be defined
only when r ⊆ M. We can define over A# a relation: (→): for M, M ′ ∈ A#, r ∈ R

we write M → M ′ iff M ′ = (M + r) ≥ 0.

m times of reactions from S0 ∈ A# corresponds to m times of vector addition,
Sm = S0+airi+ajrj +akrk +· · · , (ai, aj , ak, · · · ∈ {1, 2, 3, · · ·}, ai+aj +ak+· · · =

m, ri, rj , rk, · · · ∈ R) = S0 +

m
∑

i=1

rj , m = 1, 2, 3, · · · , rj ∈ R.

Definition (cycle) The sequence of reactions such that Si+m = Si+
m

∑

i=1

rj , m ≥

2 is called cycle and m is the period.

Definition (Rule Matrix) The rule matrix A is composed of the transpose
of all rule vectors. For example, the rule matrix of the rule vectors of {(-1 1),(1
-1)} is

A =

(

−1 1
1 −1

)

.

3 Theoretical Remark on ARMS

Remark
If the rules of R of an ARMS are linearly independent, there are no cycles in
any sequence of reactions.

proof: If the rules of an ARMS r1, r2, · · · , rn are linearly independent, there

does not exist any sequence of reactions such that Si+m = Si +

m
∑

i=1

rj , m ≥ 2.

If such a sequence existed, it would requires airi + ajrj + akrk + · · · = 0, but
since we assumed that the rule vectors are linearly independent, it is satisfied
only when ai = aj = ak = · · · = 0.
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This remark also claims that if sub sets of rule vectors are not linearly inde-
pendent, there can exist cycles in the sequence of reaction. 1

It is noted that even if a set of reaction rules are linearly independent, there
can exist cycles in its subspace. The rule vector





a

b

c



 ≡





−3
−1
1



 ,





5
1
−1



 , (1)

are linearly independent, but since the subspace of b and c is not linearly inde-
pendent, there can exist cyclic reaction sequences in the b − c space so that the
trajectory of reaction sequences will spiral in the a − b − c space.

4 Analysis of the dynamics of Brusselator

The brusselator model is a mathematical model of an autocatalytic, oscillating
chemical reaction, known as the Belousov Zhabotinsky reaction (BZ reaction)[2].
The brusselator model is given by:

A
k1

→ X r1

B + X
k2

→ Y + D r2

2X + Y
k3

→ 3X r3

X
k4

→ E r4

Fig. 1. Brusselator

where A and B are input and are continuously supplied to or richly exist in
the system. Since we are interested in the behavior of the number of X and Y,
we will use the two-dimensional rule vector x=(x y) where:

r1 = (1, 0), r2 = (−1, 1), r3 = (1,−1), r4 = (−1, 0), (2)

respectively. Although there are some of simulation based works on this model
by using various models, basically they follow:

(

xn+1

yn+1

)

=

(

1
0

)

+
ax2

nyn

C

(

1
−1

)

+
bxn

C

(

−1
1

)

+
xn

C

(

−1
0

)

.

where C is a constant for normalization and defined by axxyn+bxn+xn = C.
For simplicity, we assume that k1 and k4 are equal to 1, k2 = b and k3 = b. The
moleculaes A and B are assumed to be in large excess so that their concentrations
do not change with time. Furthermore, in analyzing dynamics we ignore the
constant C (we can ignore it without loss of generality).

1
rank(R) illustrates the ARMS may have cycles or not in its sequences of reactions
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Equilibria

Since (1 0) + (1 1) + (-1 1) + (-1 0) = (0 0) when ax2y = bx = x = 1,
obviously these rule vectors are not linearly independent and there can exist
cyclic reaction sequences. It is apparent that ax2y = bx = x = 1 is satisfied only
when (x, y) = (1, b

a
), so this is the only equilibrium of the system.

Fig. 2. When the system on macroscopic ε <<

Stability

Since X, Y ∈ A#, by calculating partial difference we obtain the Jacobian of the
system:

Jf(x, y) =

(

−bε− ε + 2axyε + ayε2 ax2y

bε − 2axε − ayε2 −ax2ε

)

, (3)

where ε is given as;

ε =
([X ] + [Y ]) + δ

[X ] + [Y ]
, (0 < δ < [X ] + [Y ]) (4)

where δ denotes the change of concentration of x ∈ X or y ∈ Y . While δ is fixed,
if [X ] + [Y ] (system size) is getting larger (macroscopic), δ is getting smaller in
relation to the system size, on the other hand, if [X ] + [Y ] is getting smaller
(mesoscopic), the δ is relatively getting larger (ε > 1). It is noted that ε ∈ the
set of quotient, Q.

Evaluated at (x, y) = (1, b
a
),

Jf(1,
b

a
) =

(

−bε + bε2 aε

−bε− bε2 −aε

)

. (5)
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Fig. 3. When the system on mesoscopic ε >>

Thus the trace, τ and determinant, det are

τ = Trace
(

Jf(1,
b

a
)
)

= (b − a − 1 + bε)ε, (6)

det = Det
(

Df(a,
b

a
)
)

= aε2, (7)

Since a > 0, ε > 0, this implies that (1, b
a
) is not a saddle point. If b <

1
ε+1

(a+1), then τ < 0 and the equilibrium is an attractor, while if b > 1
ε+1

(a+1),
it is a repellor. This shows that when a system is macroscopic, its stability is close
to the model of differentional equations, while when the system is mesoscopic,

1
ε+1

(a + 1), ε >> is getting smaller and the unstable region is expanding. Thus,
the behavior of a system on a mesoscopic scale is likely to be destabilized by
fluctuations.

5 Conclusion

On the simulation of the brusselator model, especially, on a mesoscopic scale,
Vladimir[7], using the Monte-Carlo simulation on two-dimensional lattice, re-
ported that decreasing the system size down to mesoscopic may result in the
periodic kinetic oscillations becoming aperiodic and disappearing. We have also
found this behavior throughout simulations by using ARMS [5]. We believe that
it is the descritization that makes the system unstable. However, its physical
significance is still open to discussion.

Since under the mass action law ARMS can be regarded as a linear map, we
attempted to use methods of analyzing linear dynamical systems in our investi-
gation of the stability of the system. It is a challenge to apply this method to P
Systems or the reaction map systems[1] will be the subject of our future study.
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