
Identifying P rules from membrane structures

with an error-correcting approach?
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Abstract. In this work we propose an error-correcting approach to solve
the identification of P rules for membrane modifications based on the
behavior of the P system. Here, we take the framework of inductive
inference from (structural) positive examples. The algorithm that we
propose is based on previous definitions of distances between membrane
structures and multiset tree automata.
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1 Introduction

Membrane structures are linked to P systems as the structural information as-
sociated to them in order to make calculations. The membrane structure can be
represented by a tree in which the internal nodes denote regions which have inner
regions inside. The root of the tree is always associated to the skin membrane
of the P system.

The relation between regions and trees has been strengthened by Freund et
al. [6]. The authors established that any recursively enumerable set of trees can
be generated by a P system with active membranes and string objects. In such
framework, P systems can be viewed as tree generators.

In this work we use multiset tree automata to accept and handle the tree
structures defined by P systems [19], we use edit distances between trees and
multiset tree automata [11]. Edit distances for membrane systems were also
considered in [4] and [5]. Here, we propose an inferring method to obtain a
multiset tree automaton from a (finite) set of trees.

The structure of this work is as follows: First we introduce basic definitions
and notation about multisets, tree languages and automata and P systems. Then,
we define multiset tree automata, we define the relation of mirroring between
trees and we establish some results between tree automata, multiset tree au-
tomata and mirroring trees. We establish the minimum editing distance between
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membrane structures. In section 3, we propose an error-correcting approach to
infer multiset tree automata from examples of membrane structures. Finally, we
show some conclusions and give some guidelines for future works.

2 Notation and definitions

In the sequel we will provide some concepts from formal language theory, mem-
brane systems and multiset processing. We suggest the following books to the
reader [16], [14] and [2].

Multisets

First, we will provide some definitions from multiset theory as exposed in [20].

Definition 1 Let D be a set. A multiset over D is a pair 〈D, f〉 where f : D −→
N is a function.

Definition 2 Let A = 〈D, f〉 be a multiset; we will say that A is empty if for
all a ∈ D, f(a) = 0.

Definition 3 Suppose that A = 〈D, f〉 and B = 〈D, g〉 are two multisets. Then

1. the removal of multiset B from A, denoted by A 	 B, is the multiset C =
〈D, h〉 where for all a ∈ D h(a) = max(f(a) − g(a), 0),

2. their sum, denoted by A⊕B, is the multiset C = 〈D, h〉, where for all a ∈ D

h(a) = f(a) + g(a), and
3. we will say that A = B if the multiset (A 	 B) ⊕ (B 	 A) is empty.

A multiset M = 〈D, f〉 whose size, |M |, defined by
∑

a∈D f(a), is finite is
said to be bounded. Formally, we will denote the set of all multisets 〈D, f〉 such
that

∑

a∈D f(a) = n by Mn(D).
A concept that is quite useful to work with sets and multisets is the Parikh

mapping. Formally, a Parikh mapping can be viewed as the application Ψ :
D∗ → N

n where D = {d1, d2, · · · , dn}. Given an element x ∈ D∗ we define
Ψ(x) = (#d1

(x), · · · , #dn
(x)) where #dj

(x) denotes the number of occurrences
of dj in x.

P systems

We will introduce basic concepts from membrane systems taken from [14]. A
general P system of degree m is a construct

Π = (V, T, C, µ, w1, · · · , wm, (R1, ρ1), · · · , (Rm, ρm), i0),

where:

– V is an alphabet (the objects)
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– T ⊆ V (the output alphabet)
– C ⊆ V , C ∩ T = ∅ (the catalysts)
– µ is a membrane structure consisting of m membranes
– wi, 1 ≤ i ≤ m, is a string representing a multiset over V associated with the

region i

– Ri, 1 ≤ i ≤ m, is a finite set of evolution rules over V associated with the
ith region and ρi is a partial order relation over Ri specifying a priority.
An evolution rule is a pair (u, v) (or u → v) where u is a string over V and
v = v′ or v = v′δ where v′ is a string over

{ahere, aout, ainj
: a ∈ V, 1 ≤ j ≤ m}

and δ is an special symbol not in V (it defines the membrane dissolving
action). From now on, we will denote the set {here, out, ink : 1 ≤ k ≤ m}
by tar.

– i0 is a number between 1 and m and it specifies the output membrane of Π

(in the case that it equals to ∞ the output is read outside the system).

The language generated by Π in external mode (i0 = ∞) is denoted by L(Π)
and it is defined as the set of strings that can be defined by collecting the objects
that leave the system by arranging the leaving order (if several objects leave the
system at the same time then permutations are allowed). The set of numbers
that represent the objects in the output membrane i0 will be denote by N(Π).
Obviously, both sets L(Π) and N(Π) are defined only for halting computations.

One of the multiple variations of P systems is related to the creation, division
and modification of membrane structures. There have been several works in
which these variants have been proposed (see, for example, [1, 13–15]).

In the following, we enumerate some kind of rules which are able to modify
the membrane structure:

1. 2-division: [ha]h → [h′b]h′ [h′′c]h′′

2. Creation: a → [hb]h
3. Dissolving: [ha]h → b

The power of P systems with the previous operations and other ones (e.g. ex-
ocytosis, endocytosis, etc.) has been widely studied in the membrane computing
area.

Tree automata and tree languages

Now, we will introduce some concepts from tree languages and automata as
exposed in [3, 9]. First, let a ranked alphabet be the association of an alphabet V

with a finite relation r in V ×N. We denote by Vn the subset {σ ∈ V : (σ, n) ∈ r}.
We will denote by maxarity(V ) the maximum integer n such that Vn is not
empty.

The set V T of trees over V , is defined inductively as follows:

a ∈ V T for every a ∈ V0
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σ(t1, ..., tn) ∈ V T whenever σ ∈ Vn and t1, ..., tn ∈ V T , (n > 0)

and let a tree language over V be defined as a subset of V T .

Given the tuple l =< 1, 2, ..., k > we will denote the set of permutations of l

by perm(l). Let t = σ(t1, ..., tn) be a tree over V T , we will denote the set of per-
mutations of t at first level by perm1(t). Formally, perm1(t) = {σ(ti1 , ..., tin

) :<
i1, i2, ..., in >∈ perm(< 1, 2, ..., n >)}.

Let N
∗ be the set of finite strings of natural numbers, separated by dots,

formed using the catenation as the composition rule and the empty word λ as
the identity. Let the prefix relation ≤ in N

∗ be defined by the condition that
u ≤ v if and only if u · w = v for some w ∈ N

∗ (u, v ∈ N
∗). A finite subset D of

N
∗ is called a tree domain if:

u ≤ v where v ∈ D implies u ∈ D, and

u · i ∈ D whenever u · j ∈ D (1 ≤ i ≤ j)

Each tree domain D could be seen as an unlabelled tree whose nodes cor-
respond to the elements of D where the hierarchy relation is the prefix order.
Thus, each tree t over V can be seen as an application t : D → V . The set D is
called the domain of the tree t, and denoted by dom(t). The elements of the tree
domain dom(t) are called positions or nodes of the tree t. We denote by t(x) the
label of a given node x in dom(t).

Let the level of x ∈ dom(t) be |x|. Intuitively, the level of a node measures
its distance from the root of the tree. Then, we can define the depth of a tree t

as depth(t) = max{|x| : x ∈ dom(t)}. In the same way, for any tree t, we denote
the size of the tree by |t| and the set of subtrees of t (denoted with Sub(t)) as
follows:

Sub(a) = {a} for all a ∈ V0

Sub(t) = {t} ∪
⋃

i=1,...,n

Sub(ti) for t = σ(t1, ..., tn) (n > 0)

Given a tree t = σ(t1, . . . , tn), the root of t will be denoted as root(t) and
defined as root(t) = σ. If t = a then root(t) = a. The successors of a tree
t = σ(t1, . . . , tn) will be defined as Ht =< root(t1), . . . , root(tn) >. Finally,
leaves(t) will denote the set of leaves of the tree t.

Definition 4 A finite deterministic tree automaton is defined by the tuple A =
(Q, V, δ, F ) where Q is a finite set of states, V is a ranked alphabet, Q ∩ V = ∅,
F ⊆ Q is the set of final states and δ =

⋃

i:Vi 6=∅ δi is a set of transitions defined
as follows:

δn : (Vn × (Q ∪ V0)
n) → Q n = 1, . . . , m

δ0(a) = a ∀a ∈ V0
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Given the state q ∈ Q, we define the ancestors of the state q, denoted by
Ant(q), as the set of strings

Ant(q) = {p1 · · · pn : pi ∈ Q ∪ V0 ∧ δn(σ, p1, ..., pn) = q}

From now on, we will refer to finite deterministic tree automata simply as
tree automata. We suggest [3, 9] for other definitions on tree automata.

The transition function δ is extended to a function δ : V T → Q∪V0 on trees
as follows:

δ(a) = a for any a ∈ V0

δ(t) = δn(σ, δ(t1), . . . , δ(tn)) for t = σ(t1, . . . , tn) (n > 0)

Note that the symbol δ denotes both the set of transition functions of the
automaton and the extension of these functions to operate on trees. In addition,
you can observe that the tree automaton A cannot accept any tree of depth zero.

Given a finite set of trees T , let the subtree automaton for T be defined as
ABT = (Q, V, δ, F ), where:

Q = Sub(T )

F = T

δn(σ, u1, . . . , un) = σ(u1, . . . , un) σ(u1, . . . , un) ∈ Q

δ0(a) = a a ∈ V0

Multiset tree automata and mirrored trees

We will extend over multisets some definitions of tree automata and tree lan-
guages. We will introduce the concept of multiset tree automata and then we
will characterize the set of trees that it accepts.

Given any tree automaton A = (Q, V, δ, F ) and δn(σ, p1, p2, . . . , pn) ∈ δ, we
can associate to δn the multiset 〈Q ∪ V0, f〉 ∈ Mn(Q ∪ V0) where f is defined
by Ψ(p1p2 . . . pn). The multiset defined in such way will be denoted by MΨ (δn).
Alternatively, we can define MΨ (δn) as MΨ (p1)⊕MΨ (p2)⊕· · · ⊕MΨ (pn) where
∀1 ≤ i ≤ n MΨ (pi) ∈ M1(Q ∪ V0). Observe that if δn(σ, p1, p2, . . . , pn) ∈ δ,
δ′n(σ, p′

1
, p′

2
, . . . , p′n) ∈ δ and MΨ (δn) = MΨ (δ′n) then δn and δ′n are defined over

the same set of states and symbols but in different order (that is the multiset
induced by 〈p1, p2, · · · , pn〉 equals to the one induced by 〈p′1p

′
2 . . . p′n〉).

Now, we can define a multiset tree automaton that performs a bottom-up
parsing as in the tree automaton case.

Definition 5 A multiset tree automaton is defined by the tuple MA = (Q, V, δ, F ),
where Q is a finite set of states, V is a ranked alphabet with maxarity(V ) = n,
Q∩ V = ∅, F ⊆ Q is a set of final states and δ is a set of transitions defined as
follows:
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δ =
⋃

1 ≤ i ≤ n

i : Vi 6= ∅

δi

δi : (Vi ×Mi(Q ∪ V0)) → P(M1(Q)) i = 1, . . . , n

δ0(a) = MΨ (a) ∈ M1(Q ∪ V0) ∀a ∈ V0

We can take notice that every tree automaton A defines a multiset tree
automaton MA as follows.

Definition 6 Let A = (Q, V, δ, F ) be a tree automaton. The multiset tree au-
tomaton induced by A is defined by the tuple MA = (Q, V, δ′, F ) where each δ′

is defined as follows: MΨ (r) ∈ δ′n(σ, M) if δn(σ, p1, p2, ..., pn) = r and MΨ (δn) =
M .

Observe that, in the general case, the multiset tree automaton induced by A

is non deterministic.
As in the case of tree automata, δ′ could also be extended to operate on trees.

Here, the automaton carries out a bottom-up parsing where the tuples of states
and/or symbols are transformed by using the Parikh mapping Ψ to obtain the
multisets in Mn(Q ∪ V0). If the analysis is completed and δ′ returns a multiset
with at least one final state, the input tree is accepted. So, δ′ can be extended
as follows

δ′(a) = MΨ (a) for any a ∈ V0

δ′(t) = {M ∈ δ′n(σ, M1 ⊕ · · · ⊕ Mn) : Mi ∈ δ′(ti) 1 ≤ i ≤ n}
for t = σ(t1, . . . , tn) (n > 0)

Formally, every multiset tree automaton MA accepts the following language

L(MA) = {t ∈ V
T : MΨ (q) ∈ δ

′(t), q ∈ F}

Another extension which will be useful is the one related to the ancestors of
every state. So, we define AntΨ (q) = {M : MΨ (q) ∈ δn(σ, M)}.

Theorem 7 (Sempere and López, [19]) Let A = (Q, V, δ, F ) be a tree automa-
ton, MA = (Q, V, δ′, F ) be the multiset tree automaton induced by A and t =
σ(t1, . . . , tn) ∈ V T . If δ(t) = q then MΨ (q) ∈ δ′(t).

Corollary 8 (Sempere and López, [19]) Let A = (Q, V, δ, F ) be a tree automaton
and MA = (Q, V, δ′, F ) be the multiset tree automaton induced by A. If t ∈ L(A)
then t ∈ L(MA).
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We will introduce the concept of mirroring in tree structures as exposed in
[19]. Informally speaking, two trees will be related by mirroring if some permu-
tations at the structural level hold. We propose a definition that relates all the
trees with this mirroring property.

Definition 9 Let t and s be two trees from V T . We will say that t and s are
mirror equivalent, denoted by t ./ s, if one of the following conditions holds:

1. t = s = a ∈ V0

2. t ∈ perm1(s)
3. t = σ(t1, . . . , tn), s = σ(s1, . . . , sn) and there exists < s1, s2, . . . , sk >∈

perm(< s1, s2, ..., sn >) such that ∀1 ≤ i ≤ n ti ./ si.

Theorem 10 (Sempere and López, [19]) Let A = (Q, V, δ, F ) be a tree automa-
ton, t = σ(t1, . . . , tn) ∈ V T and s = σ(s1, . . . , sn) ∈ V T . Let MA = (Q, V, δ′, F )
be the multiset tree automaton induced by A. If t ./ s then δ′(t) = δ′(s).

Corollary 11 (Sempere and López, [19]) Let A = (Q, V, δ, F ) be a tree automa-
ton, MA = (Q, V, δ′, F ) the multiset tree automaton induced by A and t ∈ V T .
If t ∈ L(MA) then, for any s ∈ V T such that t ./ s, s ∈ L(MA).

The last results were useful to propose an algorithm to determine whether
two trees are mirror equivalent or not [19]. So, given two trees s and t, we can
establish in time O((min{|t|, |s|})2) if t ./ s.

Editing distances between membrane structures

The initial order of a membrane structure can be fixed. Anyway, whenever the
system evolves (membrane dissolving, division, creation, etc.) this order can be
at least somehow ambiguous. Furthermore, the initial order of a P system is only
a naming convention given that the membrane structure of any P system can be
renamed without changing its behavior due to the parallelism ingredient (observe
that if this mechanism was sequential then the ordering could be important for
the final output).

The representation by trees could be essential for the analysis of the dynamic
behavior of P systems. Whenever we work with trees to represent the membrane
structure of a given P system, we can find a mirroring effect.

Example 12 Let us take the three membrane structures of Figure 1. Then, the
associated trees are the following (in top-down order):

σ(σ(a, a), σ(a, σ(a)))
σ(σ(σ(a), σ(a, a)), σ(a, a))

σ(σ(σ(a, σ(a), a), a), σ(a, a))
Observe that the symbol a denotes the names for elementary regions instead

of objects.
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a a a a

a a aa a

a
a

a a

a

a

Fig. 1. Three membrane structures
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We proposed a method to establish if two membrane structures µ and µ′ are
identical [19], while in [11] we proposed an algorithm to obtain the minimum set
of membrane rule applications needed to transform µ into µ′ (or vice versa). The
last algorithm was based on multiset tree automata and the tree representation
for membrane structures. Note that the target of that algorithm was to force
the automaton to accept the tree. The algorithm employed edit operations for
substitution (reduction) of a tree to a state of the automaton, deletion of a
(sub)tree and insertion of a state. Intuitively, the substitution of a tree by a
state of the automaton could be seen as the substitution of the tree by the
nearest tree that could be reduced to the state.

3 Identification with an error-correcting approach

Here, we address the problem of inferring some operators that regulate the be-
havior of a P system: Given a set of membrane structures generated by an
arbitrary P system, the problem consists of defining the set of rules needed to
generate the membrane structures of the set and (possibly) some others that do
not belong to it.

This problem could be approached as a Grammatical Inference problem [18].
Here, the set of membrane structures can be represented by a set of trees and
the set of rules that regulate the P system behavior is deduced from a multiset
tree automata. So, we will solve the problem by using inference methods for tree
languages.

The problem of inferring tree languages has been widely approached in the
grammatical inference literature. So, in [7] a method to infer k-testable tree
sets from sample data is proposed. In [8] a method to infer recognizable tree
languages from finite information is proposed. Finally, in [12] a method to infer
reversible tree languages from samples was proposed.

Here, we will use an inferring method based on error-correcting techniques.
The method that we propose is based on a preliminary technique for tree au-
tomata inference [10] based on the Error-Correcting Grammatical Inference method
(ECGI) [17]. Basically, the method constructs the set of transitions of the au-
tomaton such that the editing distances from the sample data to the automaton
is minimal.

Here, we propose an adaptation of such method. We will use multiset tree
automata instead of tree automata and the editing operations together with the
minimal editing distance is based on our previous work [11]. So, we propose
Algorithm 1 as a method to infer multiset tree automata from a finite sample
of trees. Algorithm 1 uses a subroutine showed as Algorithm 2 which calculates
the minimal editing distance for every tree to the current multiset tree automa-
ton and adds the new transitions needed to converge to the minimal cost tree
automaton.

The output of the Algorithm 1 is a multiset tree automaton that recognizes all
the trees given as input at the minimum editing cost together with the mirrored
trees of the input. Observe, that this automaton could recognize some other trees
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Algorithm 1 Error correcting multiset tree automata inference algorithm.

Input:

– A set of trees S = {t1, t2, . . . tn} (Membrane representations)

Output:

– A multiset tree automaton A = (Q, V, δ, F ) that, at least, recognizes the set of
trees {s : ∃t ∈ S, t 1 s}

Method:

1. Obtain the initial automaton
– V = {σ} ∪ leaves(t1)
– ∀s ∈ Sub(t1) in postorder

if s = σ(u1, u2, . . . , up) then Q = Q ∪ {< u1u2 . . . up >}
else /*s ∈ leaves(t1)*/ Q = Q ∪ s

End∀
– F = {< u1u2 . . . uk >} where t1 = σ(u1, u2, . . . , uk)
– δ(a) = a ∀a ∈ leaves(t1)

if u1, u2, . . . uk, < u1u2 . . . uk >∈ Q then add to the automaton
the transition δ(σ, u1u2 . . . uk) =< u1u2 . . . uk >

2. ∀ti ∈ S with 2 ≤ i ≤ n

– A = Expand(A, ti)
End∀

3. Return(A)

EndMethod.
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Algorithm 2 Automaton modification subroutine Expand(A, t).

Input:

– A multiset tree automaton A = (Q,V, δ, {qf}) and a tree t = σ(t1, t2, . . . , tm)
(membrane representation)

Output:

– A multiset tree automaton A = (Q, V, δ, F ) that accepts, at least, L(A)∪{s : s 1 t}

Method:

1. Consider the input automaton A and perform an error correcting analysis for t

according to [11]
2. From the previous step, obtain the accepting minimum cost path ∆t. Distinguish

those non-error transitions ∆N
t from the error transitions ∆E

t

3. ∀s ∈ Sub(t)
if s = (σ, s1, . . . , sk) then

consider τs the transition δ(σ, q1 . . . qk) = ps ∈ ∆t

and set Red[s] = ps

else /* s ∈ leaves(t) */ set Red[s] = s

End∀
4. ∀s = σ(s1, . . . , sk) ∈ Sub(t) /* in postorder */

if τs ∈ ∆E
t or Red[s] = ∅ then

add a new state qN to Q

add the transition δ(σ, Red[s1] . . . Red[sk]) = qN

set Red[s] = qN

else if ∃τsi
∈ ∆E

t then add the transition δ(σ, Red[s1] . . . Red[sk]) = qN

End∀
5. add the transition δ(σ, Red[t1]Red[t2] . . . Red[tm]) = qf

6. Return(A)

EndMethod.
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that have not been supplied as input. The correctness of the algorithm and its
complexity, which is polynomial with the size of the tree set, is deduced from
our previous work on editing distance [11].

We will show a complete example of the algorithm running in order to clarify
its behavior.

Example 13 Let us consider the following training set:







σ(σ(a, a), σ(a, σ(a))),
σ(σ(σ(a), σ(a, a)), σ(a, a)),
σ(σ(σ(a, σ(a), a), a), σ(a, a))







which corresponds to the membrane structures showed in Figure 1.

The first step in Algorithm 1 considers the empty automaton and the first tree,
thus obtaining the initial multiset tree automaton with the following transitions:

δ(σ, aa)= q1

δ(σ, a)= q2

δ(σ, aq2)= q3

δ(σ, q1q3)= q4 ∈ F

The second inference step performs an error correcting analysis of the second
tree in the training set and the previous automaton. The distance matrix is shown
in Table 1. Figure 2 summarizes the error correcting analysis.

q1 q2 q3 q4

s1 1 0 2 8
s2 0 1 3 9
s3 7 6 4 2
s3 0 1 3 7
s5 – – – 4

Table 1. Distance table of each subtree (in postorder) and each state of the automaton.
Minimum cost path is boldmarked. Second postorder subtree is deleted in the analysis,
therefore, its row contains no bold figure. Note that is not necessary to obtain all the
distances for the root node because only distances to final states will be considered.

The error correcting analysis obtains three error transitions. The automaton
is then modified to accept the sample. Three new transitions are added (marked
with an asterisk) in the following way:
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a

δ(σ, a) = q2

a a

�
�

�
�

Z
Z

Z
Z

−− ∗

!!!!!!!

Z
Z

Z
Z

δ(σ, aq2) = q3 ∗

a a

�
�

�
�

Z
Z

Z
Z

δ(σ, aa) = q1

!!!!!!!

XXXXXXXXXX

δ(σ, q1q3) = q4 ∈ F ∗

Fig. 2. Error correcting parsing of the tree σ(σ(σ(a), σ(a, a)), σ(a, a)). Error produc-
tions are marked with an asterisk. Note that a subtree deletion also occurred. This edit
operation is also considered as an error transition.

δ(σ, aa)= q1

δ(σ, a)= q2

δ(σ, aq2)= q3

δ(σ, q1q3)= q4 ∈ F

(∗) δ(σ, aa)= q5

(∗) δ(σ, q2q5)= q6

(∗) δ(σ, q6q1)= q4 ∈ F

Note that the inference process adds a transition which is equal to an already
exiting one. This case can be run-time detected, using the existing transition
instead of creating a new one. This automaton is considered in the following
inference step. This step considers the following tree

σ(σ(σ(a, σ(a), a), a), σ(a, a))

The distance matrix is shown in Table 2. Figure 3 summarizes the error
correcting analysis.

q1 q2 q3 q4 q5 q6

s1 1 0 2 8 1 6
s2 2 3 1 7 2 5
s3 6 5 4 6 6 6
s3 0 1 3 9 0 7
s5 – – – – – 4

Table 2. Distance table of each subtree (in postorder) and each state of the automaton.
Minimum cost path is boldmarked.

The final automaton is the following:
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a

a

−− ∗ a

!!!!!!!

aaaaaaa

δ(σ, a) = q2 ∗ a

�
�

�
�

XXXXXXXXXX

δ(σ, aq2) = q3 ∗

a a

�
�

�
�

Z
Z

Z
Z

δ(σ, aa) = q1

!!!!!!!

`````````````

δ(σ, q1q3) = q4 ∈ F

Fig. 3. Error correcting parsing of the tree σ(σ(a,σ(a, σ(a), a), a), σ(a, a)). Error pro-
ductions are marked with an asterisk. Note that the transition used to reduce the third
postorder subtree is marked as error. This transition does not add error cost but one of
its descendants is an error transition and therefore a new transition must be created.

δ(σ, aa)= q1

δ(σ, a)= q2

δ(σ, aq2)= q3

δ(σ, q1q3)= q4 ∈ F

δ(σ, aa)= q5

δ(σ, q2q5)= q6

δ(σ, q6q1)= q4 ∈ F

(∗) δ(σ, a)= q7

(∗) δ(σ, aq7a)= q8

(∗) δ(σ, aq8)= q3

In the last example we obtain a multiset tree automaton which is consistent
with the input data. Observe that this automaton induces a set of P rules for a
P system as was showed in [19] and [11].

4 Conclusions and Future Work

We have proposed a method to infer a multiset tree automaton from a finite set
of membrane structures. This multiset tree automaton employs the minimum
number of tree editing operations to accept the input set. From this multiset
tree automaton we can obtain a set of P rules that regulates the behavior of a
P system which generates the membrane structures given as input.

Here, we have used a grammatical inference technique based on an error-
correcting approach. In the future we will explore other options to infer new



Identifying P Rules from Membrane Structures 499

models (i.e. reversible tree languages, locally testable tree languages, etc.) So,
a new question arises: Given a set of trees of a tree language class (reversible,
locally testable, etc.), what is the common characteristics of the P systems that
generate them? It will introduce a characterization of P systems based on the
kind of membrane structures that they generate.
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Păun, C. Zandron (eds.). MolCoNet project IST-2001-32008. 2004.

7. P. Garćıa. Learning k-Testable tree sets from positive data. Informe técnico DSIC-
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13. A. Păun. On P systems with active membranes. In Proc. of the First Conference
on Unconventionals Models of Computation (UMC2K). pp 187-201. 2000.
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