
Computing with Genetic Gates, Proteins and

Membranes

Nadia Busi1 and Claudio Zandron2

1 Dipartimento di Scienze dell’Informazione, Università di Bologna,
Mura A. Zamboni 7, I-40127 Bologna, Italy.

busi@cs.unibo.it

2 Dipartimento di Informatica, Sistemistica e Comunicazione,
Università di Milano-Bicocca,

via Bicocca degli Arcimboldi 8, I-20126, Milano, Italy.
zandron@disco.unimib.it

Abstract. We introduce Genetic P systems, a class of P systems with
evolution rules inspired by the functioning of the genes.
The creation of new objects – representing proteins – is driven by genetic
gates: a new object is produced when all the activator objects are present,
and no inhibitor object is available. Activator objects are not consumed
by the application of such an evolution rule. Objects disappear because
of degradation: each object is equipped with a lifetime; when such a
lifetime expires, the object decays.
Then, we extend the basic model with bind and release rules and repres-
sor rules, that simulate the action of protein channels and the action of
substances which connect to other objects to block their use. We provide
a universality result for such a class of systems.

1 Introduction

Membrane computing is a branch of natural computing, initiated by Gheorghe
Păun with the definition of P systems in [3–5]. The aim is to provide a formal
modeling of the structure and the functioning of the cell, making use especially
of automata, languages and complexity theoretic tools.

Membrane systems (also called P systems) are based upon the notion of
membrane structure, which is a structure composed by several cell-membranes,
hierarchically embedded in a main membrane called the skin membrane. A plane
representation of a membrane structure can be given by means of a Venn di-
agram, without intersected sets and with a unique superset. The membranes
delimit regions and we associate with each region a set of objects, described by
some symbols over an alphabet, and a set of evolution rules.

In the basic variant, the objects evolve according to the evolution rules,
which can modify the objects to obtain new objects and send them outside
the membrane or to an inner membrane. The evolution rules are applied in a
maximally parallel manner: at each step, all the objects which can evolve should
evolve.

214 N. Busi and C. Zandron

A computation device is obtained: we start from an initial configuration, with
a certain number of objects in certain membranes, and we let the system evolve.
If a computation halts, that is no further evolution rule can be applied, the result
of the computation is defined to be the number of objects in a specified membrane
(or expelled through the skin membrane). If a computation never halts (i.e. one
or more object can be rewritten forever), then it provides no output.

An up-to-date bibliography of the area and other useful resources can be
found at [9].

The goal of this paper is to introduce systems which mimic the functioning
of the genes. The relevance of such a subject has been recently pointed out in [6].
Genetic gates work in the following way: the production of a substance is the
result of the activation of a gene, when certain substances (activators) are present
while other substances (inhibitors) are absent. It is important to stress the fact
that the production of the object does not require that one or more objects are
consumed in order to do this. Nonetheless, objects can disappear due to a decay
process. For this reason, objects are marked with a lifetime, which is decreased
by one at each computation step. When this value becomes equal to zero, the
object disappears.

We also consider rules to simulate the action of protein on membranes to com-
municate objects through protein channels, by defining bind and release rules,
and the action of certain substances which act as repressor by connecting to
other objects so to block their action, by defining repressor rules. We show that
systems with all these types of rules are universal, and we point out various
questions and investigation topics for further research.

The rest of the paper is organized as follows. In section 2 we give some
basic definitions which will be used throughout the paper. In section 3 we define
Genetic P systems and in section 4 we extend the the basic class withBind and
Release rules and repressor rules. In section 5 we provide an universality result
for such an extended class of systems. Section 6 gives some conclusive remarks
and presents various research topics.

2 Basic definitions

In this section we provide some basic definitions that will be used throughout
the paper. We start with the definition of multisets and multiset operations.

Definition 1. Given a set S, a finite multiset over S is a function m : S → IN

such that the set dom(m) = {s ∈ S |m(s) 6= 0} is finite. The multiplicity of
an element s in m is given by the natural number m(s). The set of all finite
multisets over S, denoted by Mfin(S), is ranged over by m. A multiset m such
that dom(m) = ∅ is called empty. The empty multiset is denoted by ∅.

Given the multiset m and m′, we write m ⊆ m′ if m(s) ≤ m′(s) for all s ∈ S

while ⊕ denotes their multiset union: m ⊕ m′(s) = m(s) + m′(s). The operator
\ denotes multiset difference: (m \ m′)(s) = if m(s) ≥ m′(s) then m(s) − m′(s)
else 0. The scalar product, j ·m, of a number j with m is (j ·m)(s) = j · (m(s)).

Computing with Genetic Gates, Proteins and Membranes 215

The cardinality of a multiset is the number of occurrences of elements contained
in the multiset: |m| =

∑

s∈S m(s).

The set of parts of a set S is defined as P(S) = {X | X ⊆ S}.
Given a set X ⊆ S, with abuse of notation we use X to denote also the

multiset

mX(s) =

{

1 if s ∈ X

0 otherwise

The restriction to a subset of a multiset is defined as follows:

Definition 2. Let m be a finite multiset over S and X ⊆ S. The multiset m|X
is defined as follows: for all s ∈ S,

m|X(s) =

{

m(s) if s ∈ X

0 otherwise

We provide some basic definitions on strings, cartesian products and rela-
tions.

Definition 3. A string over S is a finite (possibly empty) sequence of elements
in S. Given a string u = x1 . . . xn, the length of u is the number of occurrences
of elements contained in u and is defined as follows: |u| = n. The empty string
is denoted by λ.

With S∗ we denote the set of strings over S, and u, v, w, . . . range over S.
Given n ≥ 0, with Sn we denote the set of strings of length n over S.

Given a string u = x1 . . . xn and i such that 1 ≤ i ≤ n, with (u)i we denote
the i-th element of u, namely, (u)i = xi.

Given a string u = x1 . . . xn, the multiset corresponding to u is defined as
follows: for all s ∈ S, mu(s) = |{i | xi = s∧1 ≤ i ≤ n}|. With abuse of notation,
we use u to denote also mu.

Definition 4. With S × T we denote the cartesian product of sets S and T ,
with ×nS, n ≥ 1, we denote the cartesian product of n copies of set S and with
×n

i=1Si we denote the cartesian product of sets S1, . . . , Sn, i.e., S1 × . . . × Sn.
The ith projection of (x1, . . . , xn) ∈ ×n

i=1Si is defined as πi(x) = xi, and lifted
to subsets X ⊆ ×n

i=1Si as follows: πi(X) = {πi(x) | x ∈ X}.

Given a binary relation R over a set S, with Rn we denote the composition
of n instances or R, with R+ we denote the transitive closure of R, and with R∗

we denote the reflexive and transitive closure of R.

3 Genetic P systems

In this section, we present the definition of Genetic P systems and the definitions
which we need to describe their functioning. To this aim, we start with the
definition of membrane structure:

216 N. Busi and C. Zandron

Definition 5. Given the alphabet V = {[,]}, the set MS is the least set induc-
tively defined by the following rules:

– [] ∈ MS

– if µ1, µ2, . . . , µn ∈ MS, n ≥ 1, then [µ1 . . . µn] ∈ MS

We define the following relation over MS: x ∼ y if and only if the two
strings can be written in the following form: x = [1. . . [2. . .]2 . . . [3. . .]3 . . .]1 and
y = [1. . . [3. . .]3 . . . [2. . .]2 . . .]1 (i.e., if two pairs of parentheses that are neighbors
can be swapped together with their contents).

The set MS of membrane structures is defined as the set of equivalence
classes w.r.t. the relation ∼∗.

We say that i is the father of j (and j is a child of i) if the membrane j is
contained in i, and no membrane exists that contains j and is contained in i.

The partial function father : {1, . . . , d} → {1, . . . , d} returns the father of a
membrane i, or is undefined if i is the external membrane.

The function children : {1, . . . , d} → P({1, . . . , d}) returns the set of children
of a membrane.

We call a membrane each matching pair of parentheses appearing in the mem-
brane structure. A membrane structure µ can be represented as a Venn diagram,
in which any closed space (delimited by a membrane and by the membranes im-
mediately inside) is called a region of µ.

We can give now the definition of Genetic P systems (or GP systems for
short).

To this aim, given a set X , we define RX = P(X) ×P(X) × X.

Definition 6. A Genetic P system with timed degradation (of degree d, with
d ≥ 1) is a construct

Π = (V, µ, w0
1 , . . . , w

0
d, R1, . . . , Rd, i0)

where

1. V is a finite alphabet whose elements are called objects;
2. µ is a membrane structure consisting of d membranes (usually labelled with

i and represented by corresponding brackets [i and]i, with 1 ≤ i ≤ d);
3. w0

i , 1 ≤ i ≤ d, are strings over V × (IN ∪ ∞) associated with the regions
1, 2, . . . , d of µ; they represent multisets of objects of the form (a, t) present
in the regions of µ, where a is a symbol of the alphabet V and t > 0 represents
the decay time of that object. The multiplicity of a pair in a region is given
by the number of occurrences of this pair in the string corresponding to that
region;

4. Ri, 1 ≤ i ≤ d, are finite multisets3 of genetic gates over V associated with
the regions 1, 2, . . . , d of µ; these gates are of the forms uact,¬uinh :→ (b, t)

3 Here we use multisets of rules, instead of sets, because each rule can be used at most
once in each computational step.

Computing with Genetic Gates, Proteins and Membranes 217

where uact ∩ uinh = ∅. uact ⊆ V is the positive regulation (activation)4,
uinh ⊆ V is the negative regulation (inhibition), b ∈ V is the transcription
of the gate5 and t ∈ IN ∪∞ is the duration of object b;

5. i0 is a number between 1 and d and it specifies the output membrane of Π.

We say that a gate is unary if |uact ⊕ uinh| = 1.

The membrane structure and the multisets represented by wi, 1 ≤ i ≤ d, in Π

constitute the initial state6 of the system. A transition between states is governed
by an application of the transcriptions specified by the genetic gates which is
done in parallel; all objects, from all membranes, which can be the subject of
local evolution (that is, that can be used to apply the rule of a gate which is not
used in the same step by other objects) have to evolve simultaneously.

The gate uact,¬uinh :→ (b, t) can be activated if the region it belongs to
contains enough free activators and no free inhibitors. If the gate is activated,
the regulation objects (activators) in the set uact are bound to such a gate,
and they cannot be used for activating any other gate in the same maximal
parallelism evolution step. On the contrary, if one or more free inhibitor objects
are present in the region where the gate is placed, then one of these objects (non-
deterministically chosen) is bound to the gate, which cannot then be activated.

In other words, the gate uact,¬uinh :→ (b, t) in a region containing a multiset
of (not yet bound) objects m can be activated if uact is contained in m and no
object in uinh appears in m; if the gate performs the transcription, then a new
object (b, t) is produced. Note that the objects in uact and uinh are not consumed
by the transcription operation, but will be released at the end of the operation
and (if they do not disappear because of the decay process) they can be used
in the next maximal parallelism evolution step. Each object starts with a decay
number, which specify the number of steps after which this object disappears.
The decay number is decreased after each parallel step; when it reaches the value
zero, the object disappears. If the decay number of an object is equal to ∞, then
the object is persistent and it never disappears.

Note that the decay number associated to an object depends on the gate
that produced the object (if the object is not present in the initial system), and
not on the type of the object. Hence,a system may contain two gates, say, e.g.
a :→ (b, 5) and a,¬c :→ (b,∞): the first gate produces one copy of object b that
decays after 5 time units, whereas the second gate produces a persistent copy of
object b.7

4 We consider sets of activators, meaning that a genetic gate is never activated by
more than one instance of the same protein.

5 Usually the expression of a genetic gate consists of a single protein.
6 Here we use the term state instead of the classical term configuration because we will

define a (essentially equivalent but syntactically) different notion of configuration in
section 5.

7 We could also consider a variant of GP systems where the decaying time is a function
of the type of the object, i.e., all the objects b that are produced in the system will
have the same decaying time. We plan to deserve future investigation to this variant.

218 N. Busi and C. Zandron

We adopt the following notation for gates. The activation and inhibition sets
are denoted by one of the corresponding strings, i,e, a, b,¬c :→ (c, 5) denotes
the gate {a, b},¬{c} :→ (c, 5). If either the activation or the inhibition is empty
then we omit the corresponding set, i.e., a :→ (b, 3) is a shorthand for the gate
{a},¬∅ :→ (b, 3). The nullary gate ∅,¬∅ :→ (b, 2) is written as :→ (b, 2).

3.1 Partial configurations, reaction relation and maximal

parallelism step

Once defined genetic P systems, we are ready to describe their functioning.
Hence, we give now the definitions for partial configuration, configuration, reac-
tion relation, and heating and decaying function.

Definition 7. Let Π = (V, µ, w0
1 , . . . , w

0
d, R1, . . . , Rd, i0) be a genetic P system.

A partial configuration of Π is a tuple (w1, R1, w̄1, R̄1), . . . , (wd, Rd, w̄d, R̄d) ∈
×d((V × IN) ×RV × (V × IN) ×RV).

We use ×d
i=1(wi, Riw̄i, R̄i) to denote the partial configuration above.

The set of partial configurations of Π is denoted by ConfΠ . We use γ, γ′,

γ1, . . . to range over ConfΠ .

w1, . . . , wd represent the active multisets, whereas w̄1, . . . , w̄d represent the
frozen (already used) multisets, R1, . . . , Rd represent the active gates, while
R̄1, . . . , R̄d represent the frozen (already used) gates.

A configuration is a partial configuration containing no frozen objects; config-
urations represent the states reached after the execution of a maximal parallelism
computation step.

Definition 8. Let Π = (V, µ, w0
1 , . . . , w

0
d, R1, . . . , Rd, i0) be a GP system.

A configuration of Π is a partial configuration ×d
i=1(wi, Ri, w̄i, R̄i) satisfying

the following: w̄i = ∅ and R̄i = ∅ for i = 1, . . . , d.
The initial configuration of Π is the configuration ×d

i=1(w
0
i , Ri, ∅, ∅) .

The activation of a genetic gate is formalized by the notion of reaction re-
lation. In order to give a formal definition we need the function obj : (V ×
IN)∗ → V ∗, defined as follows. Assume that (a, t) ∈ (V × (IN ∪ ∞)) and
w ⊆ (V × (IN ∪∞))∗. Then, obj(λ) = λ and obj((a, t)w) = a obj(w).

We also need to define a function DecrTime which is used to decrement the
decay time of objects, destroying the objects which reached their time limit.

Definition 9. The function DecrT ime : (V × IN)∗ → (V × IN)∗ is defined as
follows:

DecrT ime(λ) = λ

and

DecrT ime((a, t)w) =

{

(a, t − 1)DecrT ime(w) if t > 1
DecrT ime(w) if t = 1

We are now ready to give the notion of reaction relation.

Computing with Genetic Gates, Proteins and Membranes 219

Definition 10. Let Π = (V, µ, w0
1 , . . . , w

0
d, R1, . . . , Rd, i0) be a GP system.

The reaction relation 7→ over ConfΠ × ConfΠ is defined as follows:
×d

i=1(wi, Ri, w̄i, R̄i) 7→ ×d
i=1(w

′

i, R
′

i, w̄
′

i, R̄
′

i) iff there exist k, with 1 ≤ k ≤ d

and uact,¬uinh :→ (b, t) ∈ Rk such that

– R′

k = Rk \ (uact,¬uinh :→ (b, t))
– R̄′

k = R̄k ⊕ (uact,¬uinh :→ (b, t))
– ∀i : 1 ≤ i ≤ d and i 6= k implies w′

i = wi, w̄′

i = w̄i, R′

i = Ri and R̄′

i = R̄i

– if uinh∩dom(obj(wk)) = ∅ and ∃wact ⊆ wk such that8 obj(wact) = uact then
• w′

k = wk \ wact

• w̄′

k = w̄k ⊕ {(b, t)} ⊕ DecrT ime(wact)
– if ∃(s, t) ∈ dom(wk) such that s ∈ uinh then

• w′

k = (wk) \ (s, t)
• w̄′

k = w̄k ⊕ DecrT ime((s, t))

Definition 11. The function heat&decay : ConfΠ → P(ConfΠ) is then de-
fined as follows:

heat&decay(×d
i=1(wi, Ri, w̄i, R̄i)) = ×d

i=1((DecrT ime(wi))⊕w̄i), Ri⊕R̄i, ∅, ∅)

Now we are ready to define the maximal parallelism computational step Z⇒:

Definition 12. Let Π = (V, µ, w0
1 , . . . , w

0
d, R1, . . . , Rd, i0) be a GP system.

The maximal parallelism computational step Z⇒ over (nonpartial) configura-
tions of Π is defined as follows: γ1 Z⇒ γ2 iff there exists a partial configuration
γ′ such that γ1 7→+ γ′, γ′ 67→ and γ2 = heat&decay(γ ′).

4 Genetic P Systems with Bind&Release and Repressor

Rules

The use of genetic gates alone is quite restrictive. For instance, no communication
of objects is possible through the membranes, a feature which is fundamental
in the basic variant of P systems. In fact, without communication the system
would not act as a whole unit, but instead as a collection of separate systems or
processes of various type, without interaction.

In order to enrich the model described so far, we consider also two other
types of rules which mimic two different important cellular reactions.

The first type of rules we consider (Bind&Release), mimics the communi-
cation of objects through a protein channel. Two (multisets of) substances are
bound to both side of a membrane. Then, by means of a channel in the mem-
brane, they pass in opposite directions through the membrane itself, exchanging
in this way their position. Finally, they can be released in their (new) region.

The second type of rules we consider (Repressor) mimics the action of certain
substances that act to disactivate other substances present in the cell. When such
a substance (a repressor) get in contact with another object, it creates a bond
which cannot be destroyed. The object (and the repressor substance) cannot be

8 The symbol = should be intended here as working on multisets.

220 N. Busi and C. Zandron

used anymore for any other reaction. We notice that the repressor can create
such a bond in any region of the cell. For this reason, the set of repressor rules
will be valid for the whole system (i.e., we will not define different set of repressor
rules for each region).

We provide the definition of Genetic P systems extended with Bind&Release
and Repressor rules:

Given a set X , we define RX = P(X) × P(X) × X and BRX = P(X) ×
P(X) ×P(X) ×P(X)

Definition 13. A Genetic P system with timed degradation, Bind and Release
actions and repressor rules (of degree d, with d ≥ 1), or G+P system for short,
is a construct

Π = (V, µ, w0
1 , . . . , w

0
d, R1, . . . , Rd, BR1, . . . , BRd, Rs, i0)

where

1. V , µ, i0, and w0
i , Ri, for 1 ≤ i ≤ d, are defined as in Definition 6.

2. BRi, 1 ≤ i ≤ d, are finite multisets of Bind and Release rules over V

associated with the regions 1, 2, . . . , d of µ; these rules are of the forms u[v] →
v[u] where u, v ∈ V ∗, and |uv| > 0. The weight of a Bind and Release rule
u[v] → v[u] is |u| + |v|.

3. Rs is a finite multiset of repressor rules; these rules are associated with the
system (and not to each region), and they are of the form a, b → a&b where
a, b ∈ V ;

Besides evolution driven by the application of transcriptions specified by
genetic gates and object degradation, evolution steps in G+P systems are also
concerned with object migration through membranes and proteins repression.

Objects can be moved through membranes using bind and release operations.
If outside a region i is present a multiset u of objects in (V × IN) and inside
i a multiset v of objects in (V × IN), then a rule u[v] → v[u] in BRi can be
activated, moving the multisets u and v outside and inside region i, respectively.

Finally some objects can act as repressor objects, by means of repressor rules
Rs. Such a rules of the form a, b → a&b is activated when a repressor object b

is present, thus binding to an object a and creating a new object which cannot
be used anymore with any other rule.

4.1 Partial configurations, reaction relation and maximal

parallelism step

As we did for the basic case, we give now the definitions for partial configuration,
configuration, reaction relation, and heating and decaying function for G+P

systems.

Definition 14. Let

Π = (V, µ, w0
1 , . . . , w

0
d, R1, . . . , Rd, BR1, . . . , BRd, Rs, i0)

Computing with Genetic Gates, Proteins and Membranes 221

be a G+P system.
A partial configuration of Π is a tuple
(w1, R1, BR1, w̄1, R̄1, BR1), . . . , (wd, Rd, BRd, w̄d, R̄d, BRd)
∈ ×d((V × IN) ×RV × BRV × (V × IN) ×RV × BRV).
We use ×d

i=1(wi, Ri, BRi, w̄i, R̄i, BRi) to denote the partial configuration
above. The set of partial configurations of Π is denoted by ConfΠ . We use
γ, γ′, γ1, . . . to range over ConfΠ .

w1, . . . , wd represent the active multisets, w̄1, . . . , w̄d represent the frozen
(already used) multisets, R1, . . . , Rd represent the active gate rules, R̄1, . . . , R̄d

represent the frozen (already used) gate rules, BR1, . . . , BRd represent the active
Bind&Release rules, R̄1, . . . , R̄d represent the frozen (already used) Bind&Release
rules.

A configuration is a partial configuration containing no frozen objects; config-
urations represent the states reached after the execution of a maximal parallelism
computation step.

Definition 15. Let

Π = (V, µ, w0
1 , . . . , w

0
d, R1, . . . , Rd, BR1, . . . , BRd, Rs, i0)

be a G+P system.
A configuration of Π is a partial configuration ×d

i=1(wi, Ri, BRi, w̄i, R̄i, BRi)
satisfying the following: w̄i = ∅, R̄i = ∅ and BRi = ∅ for i = 1, . . . , d.

The initial configuration of Π is the configuration ×d
i=1(w

0
i , Ri, BRi, ∅, ∅, ∅).

The activation of a genetic gate is formalized by the notion of reaction re-
lation. In order to give a formal definition we need the function obj : (V ×
IN)∗ → V ∗, defined as follows. Assume that (a, t) ∈ (V × (IN ∪ ∞)) and
w ⊆ (V × (IN ∪∞))∗. Then, obj(λ) = λ and obj((a, t)w) = a obj(w).

We also need to define a function DecrTime which is used to decrement the
time index used objects, destroying the objects which reached their time limits.
The function DecrT ime : (V × IN)∗ → (V × IN)∗ is defined as follows:

Definition 16. DecrT ime(λ) = λ

and

DecrT ime((a, t)w) =

{

(a, t − 1)DecrT ime(w) if t > 1
DecrT ime(w) if t = 1

We are now ready to give the notion of reaction relation.

Definition 17. Let

Π = (V, µ, w0
1 , . . . , w

0
d, R1, . . . , Rd, BR1, . . . , BRd, Rs, i0)

be a G+P system.
The reaction relation 7→ over ConfΠ × ConfΠ is defined as follows:

×d
i=1(wi, Ri, BRi, w̄i, R̄i, BRi) 7→ ×d

i=1(w
′

i, R
′

i, BR′

i, w̄
′

i, R̄
′

i, BR
′

i) iff there ex-
ist k, with 1 ≤ k ≤ d and a rule R in Rk ∪ BRk ∪ Rs such that

CASE 1: IF R : uact,¬uinh :→ (b, t) ∈ Rk, THEN

222 N. Busi and C. Zandron

– R′

k = Rk \ (uact,¬uinh :→ (b, t))
– R̄′

k = R̄k ⊕ (uact,¬uinh :→ (b, t))
– ∀i : 1 ≤ i ≤ d and i 6= k implies w′

i = wi, w̄′

i = w̄i, R′

i = Ri and R̄′

i = R̄i

– if uinh ∩ dom(obj(wk)) = ∅ and ∃wact ⊆ wk such that obj(wact) = uact then

• w′

k = wk \ wact

• w̄′

k = w̄k ⊕ {(b, t)} ⊕ DecrT ime(wact)

– if ∃(s, t) ∈ dom(wk) such that s ∈ uinh then
– w′

k = (wk) \ (s, t)
– w̄′

k = w̄k ⊕ DecrT ime((s, t))

CASE 2: IF R : u[v] → v[u] ∈ BRk THEN

– ∃Ubr ⊆ wfather(k) and ∃Vbr ⊆ wk such that u = obj(Ubr) and v = obj(Vbr)
– ∀i : 1 ≤ i ≤ d, i 6= k and i 6= father(k) implies w′

i = wi, w̄′

i = w̄i,

BR′

i = BRi and BR
′

i = BRi

– BR′

father(k) = BRfather(k)

– BR
′

father(k) = BRfather(k)

– w′

father(k) = wfather(k) \ Ubr

– w̄′

father(k) = w̄father(k) ⊕ DecrT ime(Vbr)

– BR′

k = BRk \ (u[v] → v[u])

– BR
′

k = BRk ⊕ (u[v] → v[u])
– w′

k = (wk) \ Vbr

– w̄′

k = w̄k ⊕ DecrT ime(Ubr)

CASE 3: R : a, b → a&b ∈ Rs

– ∃(a, t1), (b, t2) ∈ (V × IN) and (a, t1), (b, t2) ∈ wk

– ∀i : 1 ≤ i ≤ d, i 6= k w′

i = wi and w̄′

i = w̄i

– ∀i : 1 ≤ i ≤ d, R′

i = Ri and R̄′

i = R̄′

i

– ∀i : 1 ≤ i ≤ d, BR′

i = BRi and BR
′

i = BR
′

i

– w′

k = wk \ (a, t1) \ (b, t2)
– w̄′

k = w̄k ⊕ (a&b, min(t1, t2))

Definition 18. The function heat&decay : ConfΠ → P(ConfΠ) is defined as
follows:

heat&decay(×d
i=1(wi, Ri, BRi, w̄i, R̄i, BRi)) =

×d
i=1(DecrT ime(wi) ⊕ w̄i), Ri ⊕ R̄i, BRi ⊕ BRi, ∅, ∅, ∅)

Now we are ready to define the maximal parallelism computational step Z⇒:

Definition 19. Let Π = (V, µ, w0
1 , . . . , w

0
d, R1, . . . , Rd, BR1, . . . , BRd, Rs, i0) be

a G+P system.
The maximal parallelism computational step Z⇒ over (nonpartial) configura-

tions of Π is defined as follows: γ1 Z⇒ γ2 iff there exists a partial configuration
γ′ such that γ1 7→+ γ′, γ′ 67→ and γ2 = heat&decay(γ ′).

Computing with Genetic Gates, Proteins and Membranes 223

5 Turing equivalence of G
+

P systems

In this section we show that G+P systems with Bind and Release rules of weight
one are Turing powerful. The result is proved by showing how to model Random
Access Machines (RAMs) [8], a well known Turing powerful formalism.

We start recalling the definition of RAMs.

5.1 Random Access Machines

RAMs are a computational model based on finite programs acting on a finite
set of registers. More precisely, a RAM R is composed of the registers r1, . . . , rn,
that can hold arbitrary large natural numbers, and by a sequence of indexed
instructions (1 : I1), . . . , (m : Im). In [2] it is shown that the following two
instructions are sufficient to model every recursive function:

– (i : Succ(rj)): adds 1 to the contents of register rj and goes to the next
instruction;

– (i : DecJump(rj , s)): if the contents of the register rj is not zero, then
decreases it by 1 and goes to the next instruction, otherwise jumps to the
instruction s.

The computation starts from the first instruction and it continues by execut-
ing the other instructions in sequence, unless a jump instruction is encountered.
The execution stops when an instruction number higher than the length of the
program is reached.

A state of a RAM is modelled by (i, c1, . . . , cn), where i is the program
counter indicating the next instruction to be executed, and c1, . . . , cn are the
current contents of the registers r1, . . . , rn, respectively. We use the notation
(i, c1, . . . , cn) →R (i′, c′1, . . . , c

′

n) to denote that the state of the RAM R changes
from (i, c1, . . . , cn) to (i′, c′1, . . . , c

′

n), as a consequence of the execution of the
i-th instruction.

A state (i, c1, . . . , cn) is terminated if the program counter i is strictly greater
than the number of instructions m. We say that a RAM R terminates if its
computation reaches a terminated state. The output of the RAM is the contents
of register r1 in the terminated state of the RAM (if such a state exists).

5.2 Encoding RAMS in G
+

P systems

In this section we show how to model RAMs in G+P systems. Given a RAM
with n registers, the system is composed by an external membrane, containing
n children membranes, each one representing one register: [0[1]1 . . . [n]n]0 (to
simplify the notation, we label the external membrane with 0 instead of 1). The
fact that register ri contains value ci is represented by the presence of ci copies
of object (ri,∞) in the membrane i. The instructions are encoded by genetic
gates. The presence of object pi in some part of the system represents the fact
that the program counter contains the value i (i.e., the next instruction to be

224 N. Busi and C. Zandron

executed is the ith). At the beginning of the computation, an object (pi, 2) is in
the external membrane. All the objects representing the program counter will
be produced with duration 2.

As the output of the RAM is the contents of register r1 in the terminated
state of the RAM, the output of the RAM encoding is the number of occurrences
of object (r1,∞) in membrane 1.

Usually, when providing a RAM encoding of a P system, the output of the
RAM encoding is taken in (one of the) halting configurations of the encoding.
When considering GP systems, we note that it is not trivial to define what is a
halting configuration. Take, e.g., the system with a negative gate ¬a :→ (b, t),
reaching a configuration containing only a persistent object (a,∞): according to
the reaction relation, this system never terminates. Actually, no real computation
is performed, but what happens is that the inhibitor protein (a,∞) is attacked
to the negative regulation part of the gene.

Hence, here we adopt a different “termination” condition for GP systems,
quite similar to the acceptance condition of automata with final states. Namely,
we consider a computation to be successfully terminated if a configuration is
reached which contains a distinguished, persistent object (end,∞) in the external
membrane. The definition of other suitable notions of termination for GP systems
is left for future investigation.

We provide a RAM encoding which satisfies the following condition: the RAM
terminates with output k if and only if the encoding of the RAM reaches a
configuration containing the object (end,∞) in the membrane 0, and containing
exactly k occurrences of object (r1,∞) in membrane 1.

We consider RAMs that satisfy the following constraints:

1. If the RAM has m instructions, then all the jumps to addresses higher than
m are jumps to the address m + 1.

2. The “self-loops” on DecJump instructions – i.e., instruction of the kind (i :
DecJump(rj , i)) – are forbidden.

3. The instruction following a DecJump (either if the decrement or if the jump
is performed) is an increment.

Such constraints are not restrictive, as for any RAM not satisfying the constraints
it is possible to construct an equivalent RAM (i.e., a RAM computing the same
function) which satisfies the constraints above.

Consider a RAM with m instructions and n registers.
The first constraint can be easily satisfied by replacing each jump to an

address higher than m to a jump to the address m + 1.

The second constraint can be satisfied by adding to the RAM a new register
rn+1 that always contains the value zero, and by replacing each instruction
(i : DecJump(rj , i)) with a pair of instructions (i : DecJump(rj , i + 1)) and
(i + 1 : DecJump(rn+1, i). This means that the instructions following the ith
instruction are shifted of one position. More in detail, for all h : i + 1 ≤ h ≤ m

we replace h with h + 1 in all the labels of the program, as well as in all the
labels occurring in the jump instructions of the program.

Computing with Genetic Gates, Proteins and Membranes 225

The third constraint can be satisfied by adding a new register rn+2 – that will
ever be incremented and never tested – and by replacing each instruction that
can be reached after performing a DecrJump instruction with the instruction
Succ(rn+2), and by shifting accordingly the other instructions.

If the RAM has m instructions, then the following gate belongs to membrane
0:

pm+1 :→ (end,∞)

This rule permits to the system to signal termination when the instruction
pm+1 is reached. (Actually, as we will see in the following, two instances of
(end,∞) are produced, but this is not a problem.)

If the ith instruction is (i : Succ(rj)), then the following sequence of rules of
membrane 0 is executed:

step 1: pi,¬rj :→ (rj ,∞)

step 2: pi, rj ,¬pi+1 :→ (pi+1, 2)

step 3:rj []j → [rj]j
If object rj enters membrane j before the object pi+1 is created, no new

program counter i + 1 will be created and the system will either stop in a failed
computation or diverge without reaching a configuration with object end. As
the program counters have duration equal to 2, at step 3 the object pi decays.

If the i-th instruction is (i : DecJump(rj , s)) then the following sequence of
rules is executed:

step1: pi[]lj :→ [pi]lj (in membrane j)
If the contents of register rj is zero (no occurrences of rj in membrane j):

step 2: pi,¬rj :→ (ps, 3) (in membrane j)

step 3: [ps]j → ps []j (in membrane j)

After step 2 the object pi decays. If object pi erroneously exits the membrane,
then pi decays just after exiting, and the system reaches a failed computation
(or will diverge).

If the contents of register rj is greater than zero:

step 2: pi, rj ,¬deci,j :→ decri,j (in membrane j)

step 3: rj , decri,j → (pi+1, 3) (in membrane j)
step 4(1): rj , decri,j → rj&decri,j (in membrane j)

step 4(2): [pi+1]lj → pi+1 []lj (in membrane j)

After step 2 the object pi decays. Steps 4(1) and 4(2) are executed in the
same maximal parallelism step. If the rule at step 4(1) takes place before step
3 (i.e., the repressor bounds to rj before that pi+1 is created), then no new
program counter is created and the system reaches a failed configuration (or will
diverge).

The formal definition of the encoding of a RAM R with m instructions and
n registers, whose registers r1, . . . , rn contain values c1, . . . , cn is reported in
Table 1.

If some of the registers contain a value greater than zero when the RAM
terminates, then the system reaches a configuration containing the end object,
but because of gates pi,¬rj :→ (ps, 3) the system will never terminate. To obtain
an encoding that guarantees that the configurations containing the end object

226 N. Busi and C. Zandron

Π(R) = (V, µ, w0
0 , . . . , w0

d, R0, . . . , Rd, BR0, . . . , BRd, Rs, i0)

V = {pi | 1 ≤ i ≤ m + 1} ∪ {ri | 1 ≤ i ≤ n}∪
{decri,j | 1 ≤ i ≤ m + 1 ∧ 1 ≤ j ≤ n} ∪ {end}

µ = [0[1]1 . . . [n]n]0

w0
0 = (p1, 2)

|w0
j | = cj and (w0

j)i = (rj ,∞) j = 1, . . . , n and i = 1, . . . , cj

R0 =
{pm+1 :→ (end,∞)}∪
{pi, rj ,¬pi+1 :→ (pi+1, 2) | the ith instr. is (i : Succ(rj)), i = 1, . . . , m}∪
{pi, rj ,¬pi+1 :→ (pi+1, 2) | the ith instr. is (i : Succ(rj)), i = 1, . . . , m}

Rj =
{pi,¬rj :→ (ps, 3) | the ith instr. is (i : DecrJump(rj , s))}∪
{pi, rj ,¬deci,j :→ decri,j | the ith instr. is (i : DecrJump(rj , s))}∪
{rj , decri,j → (pi+1, 3) | the ith instr. is (i : DecrJump(rj , s))}

BR0 = {rj [] → [rj] | 1 ≤ j ≤ n}

BRj =
{rj [] → [rj]}∪
{pi[] → [pi] | the ith instr. is (i : DecrJump(rj , s)), i = 1, . . . , m}∪
{[pi] → pi[] | the ith instr. is (i : Succ(rj)), i = 1, . . . , m}

Rs = {rj , decri,j → rj&decri,j | 1 ≤ j ≤ n ∧ 1 ≤ i ≤ m + 1}

i0 = 1

Table 1. The G+P system encoding a RAM R.

Computing with Genetic Gates, Proteins and Membranes 227

can perform no further computation, we could add to the RAM a further register
rn+1, that will never be decreased, and consider only RAMs that terminate with
all registers empty but rn+1, and the result is contained in register rn+1. If we
provide a slight variation of the encoding, where membrane n + 1 contains no
gates (as register rn+1 can only be increased), then the above requirement is
fulfilled.

Another feature of the encoding is the fact that, if an erroneous action is
performed, then the system can reach a failed configuration (i.e., a deadlocked
configuration that does not contain the end object). It is possible to produce an
encoding that diverges when an erroneous action is performed, by adding to the
membrane 0 the gate ¬end :→ loop. However, in such a case, the configuration
containing the end object is no longer terminated. A possible solution could be
to signal termination by emitting the end object outside the external membrane.

In this section, we only use a restricted version of the Bind and Release
rules, namely, rules with weight 1. We claim that, by using cooperative symport
or antiport rules in combination with very simple genetic gates permitting to
generate as many copies as you want of any object, Turing equivalence can be
obtained as an easy consequence of the results recalled in [7].We stress the fact
that we use Bind and Release rules of weight 1 to get universality, as symport
rules of weight 2 (or alternatively antiport rules with one object entering the
membrane and one object exiting the membrane) are already universal, without
taking into account genetic gates.

We proved Turing equivalence of G+P systems with Bind and Release rules
of weight one and suppressor rules. We started some investigation on the expres-
siveness of more restricted versions of G+P systems.

We conjecture that in G+P systems with only positive gates and with Bind
and Release rules of weight 1 (and without repressor rules) it is possible to decide
if a system can reach a configuration containing a end object. This result could
be proved by using the set saturation methods for well-structured transition
systems defined in [1]. A consequence of this conjecture is the fact that such a
class of systems is not Turing equivalent, according to the encoding rules defined
above.

If we consider systems with both positive and negative gates and with persis-
tent objects (i.e., objects with an infinite duration) only (and without bind and
release rules and without repressor rules), we conjecture that the set of configu-
rations of the system with the maximal parallelism rule is a finite state machine,
hence most of the behavioural properties can be decided.

6 Conclusions

We have presented Genetic P systems, a new class of P systems where objects
can be produced by means of evolution rules which are inspired from the func-
tioning of the genes: a gene is activated (producing a new object), when certain
substances (activators) are present while other substances (inhibitors) are ab-
sent.

228 N. Busi and C. Zandron

We have also considered rules that mimic the action of proteins on mem-
branes to communicate objects through protein channels, and rules simulating
the action of repressor substances. We showed that systems with all these types
of rules are universal.

Many investigations and research directions can be explored.
For instance, we can consider different kind of genetic gates, where more

objects can be created at the same time by a single activation of the gate, or
where the inhibition requires the presence of all inhibiting substances.

Also genetic gates where both inhibitors and activators can be attached to
the gate at the same time can be considered.

For what concern the decaying process of the objects, we could also consider
a non–deterministic decay process: at each parallel evolution step some objects
are non–deterministically chosen to be eliminated from the set of objects in the
system.

Various questions already investigated for “classic” P systems, could be in-
vestigated also for the systems defined in this paper, such as, for example, de-
cidability, computational power, comparison with other formalism.

We also think that such a model would be very useful to be used in the
systems biology area, to simulate various biological cell processes.

References

1. A. Finkel and Ph. Schnoebelen. Well-Structured Transition Systems Everywhere!
Theoretical Computer Science, 256:63–92, Elsevier, 2001.

2. M.L. Minsky. Computation: finite and infinite machines. Prentice-Hall, Englewood
Cliffs, 1967.

3. G. Păun. Computing with membranes: an Introduction. Bull. EATCS 67, 1999.
4. G. Păun. Computing with membranes. Journal of Computer and System Sciences,

61(1):108–143, 2000.
5. G. Păun. Membrane Computing. An Introduction. Springer, 2002.
6. G. Păun. 2006 Research Topics in Membrane Computing. Proc. Fourth Brain-

storming Week on Membrane Computing, Felix Editora, Sevilla, 2006.
7. Y. Rogozhin, A. Alhazov, R. Freund, Computational Power of Symport/Antiport:

History, Advances and Open Problems. Proc 6th International Workshop on Mem-
brane Computing (WMC6), LNCS 3850, Springer, 2006.

8. J.C. Shepherdson and J.E. Sturgis. Computability of recursive functions. Journal
of the ACM, 10:217–255, 1963.

9. P Systems webpage. http://psystems.disco.unimib.it.

