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Abstract. We consider extended variants of spiking neural P systems
and show how these extensions of the original model allow for easy proofs
of the computational completeness of extended spiking neural P systems
and for the characterization of semilinear sets and regular languages by
finite extended spiking neural P systems (defined by having only finite
sets of rules assigned to the cells) with only a bounded number of neurons.

1 Introduction

Just recently, a new variant of P systems was introduced based on the biological
background of neurons sending electrical impulses along axons to other neurons.
This biological background had already led to several models in the area of neural
computation, e.g., see [12], [13], and [8]. In the area of P systems, one basic model
considers hierarchical membrane structures, whereas in another important model
cells are placed in the nodes of a graph (which variant was first considered in
[19]; tissue P systems then were further elaborated, for example, in [7] and [14]).
Based on the structure of this model of tissue P systems, in [11] the new model of
spiking neural P systems was introduced. The reader is referred to this seeding
paper for the interesting details of the biological motivation for this kind of P
systems; we will recall just a few of the most important features:

In spiking neural P systems, the contents of a cell (neuron) consists of a
number of so-called spikes. The rules assigned to a cell allow us to send infor-
mation to other neurons in the form of electrical impulses (also called spikes)
which are summed up at the target cell; the application of the rules depends
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on the contents of the neuron and in the general case is described by regular
sets. As inspired from biology, the cell sending out spikes may be “closed” for a
specific time period corresponding to the refraction period of a neuron; during
this refraction period, the neuron is closed for new input and cannot get excited
(“fire”) for spiking again.

The length of the axon may cause a time delay before a spike arrives at the
target. Moreover, the spikes coming along different axons may cause effects of
different magnitude. We shall include these features in our extended model of
spiking neural P systems considered below. Some other features also motivated
from biology will shortly be discussed in Section 5, e.g., the use of inhibiting
neurons and spikes, respectively. From a mathematical point of view, the most
important theoretical feature we shall include in our model of extended spiking
neural P systems is that we allow the neurons to send spikes along the axons
with different magnitudes at different moments of time.

In [11] the output of a spiking neural P system was considered to be the
time between two spikes in a designated output cell. It was shown how spiking
neural P systems in that way can generate any recursively enumerable set of
natural numbers. Moreover, a characterization of semilinear sets was obtained by
spiking neural P system with a bounded number of spikes in the neurons. These
results can also be obtained with even more restricted forms of spiking neural
P systems, e.g., no time delay (refraction period) is needed, as it was shown
in [10]. In [18], the behaviour of spiking neural P systems on infinite strings
and the generation of infinite sequences of 0 and 1 (the case when the output
neuron spikes) was investigated. Finally, in [1], the generation of strings (over
the binary alphabet 0 and 1) by spiking neural P systems was investigated; due
to the restrictions of the original model of spiking neural P systems, even specific
finite languages cannot be generated, but on the other hand, regular languages
can be represented as inverse-morphic images of languages generated by finite
spiking neural P systems, and even recursively enumerable languages can be
characterized as projections of inverse-morphic images of languages generated by
spiking neural P systems. The problems occurring in the proofs are also caused
by the quite restricted way the output is obtained from the output neuron as
sequence of symbols 0 and 1. The strings of a regular or recursively enumerable
language could be obtained directly by collecting the spikes sent by specific
output neurons for each symbol.

In the extended model introduced in this paper, we shall use a specific output
neuron for each symbol. Computational completeness can be obtained by sim-
ulating register machines as in the proofs elaborated in the papers mentioned
above, yet in an easier way using only a bounded number of neurons. More-
over, regular languages can be characterized by finite extended spiking neural P
systems; again, only a bounded number of neurons is really needed.

The rest of the paper is organized as follows: In the next section, we recall
some preliminary notions and definitions, especially the definition and some well-
known results for register machines. In section 3 we define our extended model
of spiking neural P systems and explain how it works. The generative power
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of extended spiking neural P systems is investigated in section 4. Finally, in
section 5 we give a short summary of the results obtained in this paper and
discuss some further variants of extended spiking neural P systems, especially
variants with inhibiting neurons or axons.

2 Preliminaries

For the basic elements of formal language theory needed in the following, we
refer to any monograph in this area, in particular, to [2] and [20]. We just list
a few notions and notations: V ∗ is the free monoid generated by the alphabet
V under the operation of concatenation and the empty string, denoted by λ, as
unit element. N+ denotes the set of positive integers (natural numbers), N is the
set of non-negative integers, i.e., N = N+∪{0}, and Z denotes the set of integers.
The interval of natural numbers between 1 and m is denoted by [1..m]. We call
a set M ⊆ Z regular if and only if M = M ′ ∪M ′′ with M ′ ⊆ N and M ′′ ⊆ −N+

such that both M ′ and −M ′′ are regular (i.e., semilinear) subsets of N. Observe
that there is a one-to-one correspondence between a set M ⊆ N and the one-
letter language L (M) = {an | n ∈ M}, hence, M is a regular (semilinear) set of
non-negative integers if and only if L (M) is a regular language. In an obvious
way, the notion of regularity can be extended to subsets of Z

k for every k ∈ N+.
By FIN (M), REG (M), and RE (M), for any M ⊆ Z

k, we denote the sets of
subsets of M that are finite, regular, and recursively enumerable, respectively.

By REG (REG (k)) and RE (RE (k)) we denote the family of regular and
recursively enumerable languages (over a k-letter alphabet), respectively. By
ΨT (L) we denote the Parikh image of the language L ⊆ T ∗, and by PsFL we
denote the set of Parikh images of languages from a given family FL. In that
sense, PsRE (k) corresponds with the family of recursively enumerable sets of
k-dimensional vectors of non-negative integers.

2.1 Register Machines

The proofs of the results establishing computational completeness in the area of
P systems often are based on the simulation of register machines; we refer to [15]
for original definitions, and to [4] for definitions like those we use in this paper:

An n-register machine is a construct M = (n, P, l0, lh) , where n is the number
of registers, P is a finite set of instructions injectively labelled with elements from
a given set Lab (M), l0 is the initial/start label, and lh is the final label.

The instructions are of the following forms:

– l1 : (A (r) , l2, l3) (ADD instruction)
Add 1 to the contents of register r and proceed to one of the instructions
(labelled with) l2 and l3.

– l1 : (S (r) , l2, l3) (SUB instruction)
If register r is not empty, then subtract 1 from its contents and go to in-
struction l2, otherwise proceed to instruction l3.
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– lh : halt (HALT instruction)
Stop the machine. The final label lh is only assigned to this instruction.

A (non-deterministic) register machine M is said to generate a vector
(s1, . . . , sβ) of natural numbers if, starting with the instruction with label l0
and all registers containing the number 0, the machine stops (it reaches the in-
struction lh : halt) with the first β registers containing the numbers s1, . . . , sβ

(and all other registers being empty).
Without loss of generality, in the succeeding proofs we will assume that

in each ADD instruction l1 : (A (r) , l2, l3) and in each SUB instruction l1 :
(S (r) , l2, l3) the labels l1, l2, l3 are mutually distinct (for a short proof see [7]).

The register machines are known to be computationally complete, equal in
power to (non-deterministic) Turing machines: they generate exactly the sets
of vectors of non-negative integers which can be generated by Turing machines,
i.e., the family PsRE.

The results proved in [5] (based on the results established in [15]) and [4], [6]
immediately lead to the following result:

Proposition 1. For any recursively enumerable set L ⊆ N
β of vectors of non-

negative integers there exists a non-deterministic (β + 2)-register machine M
generating L in such a way that, when starting with all registers 1 to β + 2
being empty, M non-deterministically computes and halts with ni in registers i,
1 ≤ i ≤ β, and registers β+1 and β+2 being empty if and only if (n1, ..., nβ) ∈ L.
Moreover, the registers 1 to β are never decremented.

When considering the generation of languages, we can use the model of a
register machine with output tape, which also uses a tape operation:

– l1 : (write (a) , l2)
Write symbol a on the output tape and go to instruction l2.

We then also specify the output alphabet T in the description of the register
machine with output tape, i.e., we write M = (n, T, P, l0, lh).

The following result is folklore, too (e.g., see [15] and [3]):

Proposition 2. Let L ⊆ T ∗ be a recursively enumerable language. Then L can
be generated by a register machine with output tape with 2 registers. Moreover,
at the beginning and at the end of a successful computation generating a string
w ∈ L both registers are empty, and finally, only successful computations halt.

3 Extended Spiking Neural P Systems

The reader is supposed to be familiar with basic elements of membrane comput-
ing, e.g., from [16]; comprehensive information can be found on the P systems
web page http://psystems.disco.unimib.it. Moreover, for the motivation
and the biological background of spiking neural P systems we refer the reader
to [11].
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An extended spiking neural P system (of degree m ≥ 1) (in the following we
shall simply speak of an ESNP system) is a construct

Π = (m, S, R)

where

– m is the number of cells (or neurons); the neurons are uniquely identified
by a number between 1 and m (obviously, we could instead use an alphabet
with m symbols to identify the neurons);

– S describes the initial configuration by assigning an initial value (of spikes)
to each neuron; for the sake of simplicity, we assume that at the beginning
of a computation we have no pending packages along the axons between the
neurons;

– R is a finite set of rules of the form (i, E, k, d; r) such that i ∈ [1..m] (spec-
ifying that this rule is assigned to cell i), E ⊆ REG (N) is the checking set
(the current number of spikes in the neuron has to be from E if this rule
shall be executed), k ∈ N is the “number of spikes” (the energy) consumed
by this rule, d is the delay (the “refraction time” when neuron i performs
this rule), and r is a (possibly empty) sequence of productions of the form
(l, w, t) where l ∈ [1..m] (thus specifying the target cell), w ∈ N is the weight
of the energy sent along the axon from neuron i to neuron l, and t is the
time needed before the information sent from neuron i arrives at neuron l
(i.e., the delay along the axon).

A configuration of the ESNP system is described as follows:

– for each neuron, the actual number of spikes in the neuron is specified;
– in each neuron i, we may find an “activated rule” (i, E, k, d′; r) waiting to

be executed where d′ is the remaining time until the neuron spikes;
– in each axon to a neuron l, we may find pending packages of the form (l, w, t′)

where t′ is the remaining time until w spikes have to be added to neuron l
provided it is not closed for input at the time this package arrives.

A transition from one configuration to another one now works as follows:

– for each neuron i, we first check whether we find an “activated rule”
(i, E, k, d′; r) waiting to be executed; if d′ = 0, then neuron i “spikes”, i.e.,
for every production (l, w, t) occurring in the sequence r we put the corre-
sponding package (l, w, t) on the axon from neuron i to neuron l, and after
that, we eliminate this “activated rule” (i, E, k, 0; r);

– for each neuron l, we now consider all packages (l, w, t′) on axons leading
to neuron l; provided the neuron is not closed, i.e., if it does not carry an
activated rule (i, E, k, d′; r) with d′ > 0, we then sum up all weights w in
such packages where t′ = 0 and add this sum to the corresponding number
of spikes in neuron l; in any case, the packages with t′ = 0 are eliminated
from the axons, whereas for all packages with t′ > 0, we decrement t′ by one;
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– for each neuron i, we now again check whether we find an “activated rule”
(i, E, k, d′; r) (with d′ > 0) or not; if we have not found an “activated rule”,
we now may apply any rule (i, E, k, d; r) from R for which the current number
of spikes in the neuron is in E and then put a copy of this rule as “activated
rule” for this neuron into the description of the current configuration; on the
other hand, if there still has been an “activated rule” (i, E, k, d′; r) in the
neuron with d′ > 0, then we replace d′ by d′ − 1 and keep (i, E, k, d′ − 1; r)
as the “activated rule” in neuron i in the description of the configuration for
the next step of the computation.

After having executed all the substeps described above in the correct se-
quence, we obtain the description of the new configuration. A computation is
a sequence of configurations starting with the initial configuration given by S.
A computation is called successful if it halts, i.e., if no pending package can be
found along any axon, no neuron contains an activated rule, and for no neuron,
a rule can be activated.

In the original model introduced in [11], in the productions (l, w, t) of a rule
(i, E, k, d; {(l, w, t)}), only w = 1 (for spiking rules) or w = 0 (for forgetting
rules) as well as t = 0 was allowed (and for forgetting rules, the checking set E
had to be finite and disjoint from all other sets E in rules assigned to neuron
i). Moreover, reflexive axons, i.e., leading from neuron i to neuron i, were not
allowed, hence, for (l, w, t) being a production in a rule (i, E, k, d; r) for neuron
i, l 6= i was required. Yet the most important extension is that different rules for
neuron i may affect different axons leaving from it whereas in the original model
the structure of the axons (called synapses there) was fixed. Finally, we should
like to mention that the sequence of substeps leading from one configuration to
the next one together with the interpretation of the rules from R was taken in
such a way that the original model can be interpreted in a consistent way within
the extended model introduced in this paper. From a mathematical point of view,
another interpretation in our opinion would have been more suitable: whenever
a rule (i, E, k, d; r) is activated, the packages induced by the productions (l, w, t)
in the sequence r of a rule (i, E, k, d; r) activated in a computation step are
immediately put on the axon from neuron i to neuron l, whereas the delay d
only indicates the refraction time for neuron i itself, i.e., the time period this
neuron will be closed. Yet as in the proofs of computational completeness given
below we shall not need any of the delay features, we shall not investigate this
variant in more details anymore in the rest of the paper.

Depending on the purpose the ESNP system shall be used, some more fea-
tures have to be specified: for generating k-dimensional vectors of non-negative
integers, we have to designate k neurons as output neurons ; the other neurons
then will also be called actor neurons. Without loss of generality, in the follow-
ing we shall assume the output neurons to be the first k neurons of the ESNP
system. Moreover, for the sake of conciseness, we shall also assume that no rules
are assigned to these output neurons (as in the original model they correspond
to a sensor in the environment of the system and are not neurons of the system
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itself). There are several possibilities to define how the output values are com-
puted; according to [11], we can take the distance between the first two spikes
in an output neuron to define its value; in this paper, we shall prefer to take the
number of spikes at the end of a successful computation in the neuron as the
output value. For generating strings, we do not interpret the spike train of a sin-
gle output neuron as done, for example, in [1], but instead consider the sequence
of spikes in the output neurons each of them corresponding to a specific terminal
symbol; if more than one output neuron spikes, we take any permutation of the
corresponding symbols as the next substring of the string to be generated.

The delay t in productions (l, w, t) can be used to replace the delay in the
neurons themselves in many of the constructions elaborated, for example, in
[11], [17], and [1]; there often a subconstruction is implemented which ensures
that a neuron l3 gets a spike one time step later than a neuron l2, both getting
the impulse from a neuron l1; to accomplish this task in the original model,
two intermediate neurons are needed using the refraction period delay of one
neuron, whereas we can get this effect directly from neuron l1 by using the delay
along the axons using the rule (l1, E, k, 0; (l2, 1, 0) , (l3, 1, 1)). In that way, only
this feature allows for simpler proofs; on the other hand, taking into account the
other extensions in ESNP systems as defined above, we shall not need any of the
delay features for the proofs of computational completeness given below.

4 ESNP Systems as Generating Devices

We now consider extended spiking neural P systems as generating devices. As
throughout this section we do not use delays in the rules and productions, we sim-
ply omit them to keep the description of the systems concise, i.e., for a production
(i, j, t) we simply write (i, j); for example, instead of (2, {i} , i, 0; (1, 1, 0) , (2, j, 0))
we write (2, {i} , i; (1, 1) , (2, j)).

The following example gives a characterization of regular sets of non-negative
integers:

Example 1. Any semilinear set of non-negative integers M can be generated by
a finite ESNP system with only two neurons.

Let M be a semilinear set of non-negative integers and consider a regular
grammar G generating the language L (G) ⊆ {a}

∗

with N (L (G)) = M ; with-
out loss of generality we assume the regular grammar to be of the form G =
(N, {a} , A1, P ) with the set of non-terminal symbols N , N = {Ai | 1 ≤ i ≤ m},
the start symbol A1, and P the set of regular productions of the form B → aC
with B, C ∈ N and A → λ. We now construct the finite ESNP system
Π = (2, S, R) that generates an element of M by the number of spikes con-
tained in the output neuron 1 at the end of a halting computation: we start with
one spike in neuron 2 (representing the start symbol A1 and no spike in the out-
put neuron 1, i.e., S = {(1, 0) , (2, 1)}. The production Ai → aAj is simulated by
the rule (2, {i} , i; (1, 1) , (2, j)) and Ai → λ is simulated by the rule (2, {i} , i; ),
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i.e., in sum we obtain

Π = (2, S, R) ,
S = {(1, 0) , (2, 1)} ,
R = {(2, {i} , i; (1, 1) , (2, j)) | 1 ≤ i, j ≤ m, Ai → aAj ∈ P}

∪ {(2, {i} , i; ) | 1 ≤ i ≤ m, Ai → λ ∈ P} .

Neuron 2 keeps track of the actual non-terminal symbol and stops the derivation
as soon as it simulates a production Ai → λ, because finally neuron 2 is empty.
In order to guarantee that this is the only way how we can obtain a halting
computation in Π , without loss of generality we assume G to be reduced, i.e.,
for every non-terminal symbol A from N there is a regular production with A
on the left-hand side. These observations prove that we have N (L (G)) = M .

We should like to mention that we can also generate the numbers in M as
the difference between the (first) two spikes arriving in the output neuron by
the following ESNP system Π ′:

Π ′ = (2, S′, R′) ,
S′ = {(1, 0) , (2, m + 1)} ,
R′ = {(2, {i} , i; (2, j)) | 1 ≤ i, j ≤ m, Ai → aAj ∈ P}

∪ {(2, {i} , i; (1, 1)) | 1 ≤ i ≤ m, Ai → λ ∈ P}
∪ {(2, {m + 1} , m + 1; (1, 1) , (2, 1))} .

We should like to mention that one reason for the constructions given above
to be that easy is the fact that we allow “reflexive” axons, i.e., we can keep track
of the actual non-terminal symbol without delay. We could avoid this by adding
an additional neuron 3 thus obtaining the following finite ESNP system:

Π ′′ = (3, S′′, R′′) ,
S′′ = {(1, 0) , (2, 0) , (3, 1)} ,
R′′ = {(2, {i} , i; (3, j) , (1, 1)) , (3, {i} , i; (2, i))

| 1 ≤ i, j ≤ m, Ai → aAj ∈ P}
∪ {(2, {i} , i; ) | 1 ≤ i ≤ m, Ai → λ ∈ P} .

Observe that the derivation in the corresponding grammar now is delayed by a
factor of 2 in the computation in Π , because we need one step to propagate the
information from neuron 3 to neuron 2 which then sends the spikes to the out-
put neuron. Hence, an interpretation of the generated number as the difference
between two spikes in the output neuron is not possible anymore.

Lemma 1. For any ESNP system where during a computation only a bounded
number of spikes occurs in the actor neurons, the generated language is regular.

Proof (sketch). Let Π be an ESNP system where during a computation only
a bounded number of spikes occurs in the actor neurons. Then the number of
configurations differing in the actor neurons and the packages along the axons,
but without considering the contents of the output neurons, is finite, hence, we
can assign non-terminal symbols Ak to each of these configurations and take
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all right-regular productions Ai → wAj such that w is a permutation of the
string obtained by concatenating the symbols indicated by the number of added
spikes when going from configuration i to configuration j. If we interpret just the
number of spikes in the output neurons as the result of a successful computation,
then we obtain the Parikh set of the language, which then obviously is regular,
i.e., semilinear. �

As we shall see later in this section, ESNP systems are computationally
complete, hence, the question whether in an ESNP system during a computation
only a bounded number of spikes occurs in the actor neurons is not decidable,
but there is a simple syntactic feature that allows us to characterize regular sets,
namely the finiteness of an ESNP system. The following theorem is a consequence
of the preceding lemma and the example given above:

Theorem 1. Any regular language L with L ⊆ T ∗ for a terminal alphabet T
with card (T ) = n can be generated by a finite ESNP system with n+1 neurons.
On the other hand, every language generated by a finite ESNP system is regular.

Proof. Let G be a regular grammar G generating the language L (G) = L ⊆ T ∗,
T = {ak | 1 ≤ k ≤ n}; without loss of generality we assume the regular grammar
to be of the form G = (N, T, A1, P ) with the set of non-terminal symbols N ,
N = {Ai | 1 ≤ i ≤ m}, the start symbol A1, and P the set of regular productions
of the form Ai → akAj with Ai, Aj ∈ N , ak ∈ T , and Ai → λ with Ai ∈ N .
We now construct the finite ESNP system Π = (n + 1, S, R) that generates an
element of L by the sequence of spikes in the output neurons 1 to n corresponding
with the desired string during a halting computation: we start with one spike
in neuron n + 1 (representing the start variable A1 and no spike in the output
neurons 1 to n:

Π = (n + 1, S, R) ,
S = {(1, 0) , ..., (n, 0) , (n + 1, 1)} ,
R = {(n + 1, {i} , i; (k, 1) , (n + 1, j)) ,

| 1 ≤ i, j ≤ m, 1 ≤ k ≤ n, Ai → akAj ∈ P}
∪ {(n + 1, {i} , i; ) | 1 ≤ i ≤ m, Ai → λ ∈ P} .

Obviously, L (G) = L (Π) = L.
On the other hand, let Π = (m, S, R) be a finite ESNP system. Then from

Π we can construct an equivalent finite ESNP system Π ′ = (m, S, R′) such that
Π ′ fulfills the requirements of Lemma 1: let x be the maximal number occurring
in all the checking sets of rules from R and let y be (a number not less than) the
maximal number of spikes that can be added in one computation step to any of
the m neurons of Π (an upper bound for y is the maximal number of weights
in the productions of the rules in R multiplied by the maximal delay in these
productions +1 multiplied by the maximal number of axons ending in a neuron
of Π); then define

R′ = R ∪ {(i, {x + 1 + k} , k; ) | 1 ≤ k < 2y} .
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Hence, the maximal number of spikes in any of the neurons of Π ′ is x + 2y,
therefore Lemma 1 can be applied (observe that the additional rules in R′ cannot
lead to additional infinite computations, because they only consume spikes, but
let the contents of the neurons stay above x, hence, no other rules become
applicable). �

Corollary 1. Any semilinear set of n-dimensional vectors can be generated by
a finite ESNP system with n + 1 neurons. On the other hand, every set of n-
dimensional vectors generated by a finite ESNP system is semilinear.

Proof. The result directly follows from Theorem 1 by just taking the number of
spikes in the output neurons, i.e., the corresponding Parikh set of the generated
language (because PsREG (n) = REG (Nn)). �

We now show that every recursively enumerable language over an n-letter
alphabet can be generated by an ESNP system with a bounded number of neu-
rons:

Theorem 2. Any recursively enumerable language L with L ⊆ T ∗ for a terminal
alphabet T with card (T ) = n can be generated by an ESNP system with n + 3
neurons.

Proof. Let M = (2, T, P, l0, lh) be a register machine with output tape gen-
erating L according to Proposition 2. Then we construct an ESNP system
Π = (n + 3, S, R) where neurons 1 to n are the output neurons, neurons n + 1
and n + 2 represent the two registers of M and neuron n + 3 is the actor neuron
guiding the whole computation by carrying out all actions needed to simulate
the instructions of P . The main idea of the construction of Π is that neurons
n + 1 and n + 2 in each even computation step send one or two spikes, respec-
tively, to neuron n + 3 if they are non-empty, hence, in the odd steps neuron
n + 3 “knows” what to do next when simulating an instruction from Π , e.g., if
the contents of one of these neurons is non-empty and has to be incremented,
then two spikes are sent back, if it has to be decremented, no spike is sent back,
and otherwise one spike is sent back to restore the original contents. As at the
end of a successful computation both registers are empty, also the computation
in Π stops because neurons n + 1 and n + 2 will not spike anymore. A tape op-
eration l1 : (write (ak) , l2) is simulated by sending a spike to the output neuron
representing symbol ak. Now let Lab (M) = [1..h] be the set of labels for the
instructions in P ; without loss of generality, we assume l0 = 1 and lh = h. Then
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Π is constructed as follows:

Π = (n + 3, S, R) ,
S = {(1, 0) , ..., (n, 0) , (n + 1, 1) , (n + 2, 1) , (n + 3, 4)} ,
R = {(n + 3, {4l1} , 4l1; (n + 3, 8l2) , (k, 1)) ,

(n + 3, {4l1 + 1} , 4l1 + 1; (n + 1, 1) , (n + 3, 8l2) , (k, 1)) ,
(n + 3, {4l1 + 2} , 4l1 + 2; (n + 2, 1) , (n + 3, 8l2) , (k, 1)) ,
(n + 3, {4l1 + 3} , 4l1 + 3; (n + 1, 1) , (n + 2, 1) , (n + 3, 8l2) , (k, 1))
| l1 : (write (ak) , l2) ∈ P}

∪ {(n + 3, {4l1} , 4l1; (n + 1, 1) , (n + 3, 8l)) ,
(n + 3, {4l1 + 1} , 4l1 + 1; (n + 1, 2) , (n + 3, 8l)) ,
(n + 3, {4l1 + 2} , 4l1 + 2; (n + 1, 1) , (n + 1, 1) , (n + 3, 8l)) ,
(n + 3, {4l1 + 3} , 4l1 + 3; (n + 1, 2) , (n + 1, 1) , (n + 3, 8l))
| l1 : (A (1) , l2, l3) ∈ P, l ∈ {l2, l3}}

∪ {(n + 3, {4l1} , 4l1; (n + 2, 1) , (n + 3, 8l)) ,
(n + 3, {4l1 + 1} , 4l1 + 1; (n + 1, 1) , (n + 1, 1) , (n + 3, 8l)) ,
(n + 3, {4l1 + 2} , 4l1 + 2; (n + 2, 2) , (n + 3, 8l)) ,
(n + 3, {4l1 + 3} , 4l1 + 3; (n + 1, 1) , (n + 2, 2) , (n + 3, 8l))
| l1 : (A (2) , l2, l3) ∈ P, l ∈ {l2, l3}}

∪ {(n + 3, {4l1} , 4l1; (n + 3, 8l3)) ,
(n + 3, {4l1 + 1} , 4l1 + 1; (n + 3, 8l2)) ,
(n + 3, {4l1 + 2} , 4l1 + 2; (n + 2, 1) , (n + 3, 8l3)) ,
(n + 3, {4l1 + 3} , 4l1 + 3; (n + 2, 1) , (n + 3, 8l2))
| l1 : (S (1) , l2, l3) ∈ P}

∪ {(n + 3, {4l1} , 4l1; (n + 3, 8l3)) ,
(n + 3, {4l1 + 1} , 4l1 + 1; (n + 1, 1) , (n + 3, 8l3)) ,
(n + 3, {4l1 + 2} , 4l1 + 2; (n + 3, 8l2)) ,
(n + 3, {4l1 + 3} , 4l1 + 3; (n + 1, 1) , (n + 3, 8l2))
| l1 : (S (2) , l2, l3) ∈ P}

∪ {(n + 1, N0, 1; (n + 3, 1)) , (n + 2, N0, 1; (n + 3, 2))}
∪ {(n + 3, {8l + 3} , 4l + 3; (n + 1, 1) , (n + 2, 1)) | 1 ≤ l < h}
∪ {(n + 3, {8h + 3} , 8h + 3; )} .

The label l of an instruction from P is encoded as 4l in the odd steps of a
computation in Π and as 8l in the even steps. 4l in neuron n + 3 indicates that
both neurons n + 1 and n + 2 are empty, 4l + 1/4l + 2 indicates that neuron
n + 1/ n + 2, respectively, is non-empty, whereas the other neuron is empty,
and 4l + 3 indicates that both neurons are non-empty. As in the odd step both
neurons n + 1 and n + 2 have received a spike from neuron n + 3, in the even
step the contents of neuron n + 3 will be of the form 8l + 3. The final rule
(n + 3, {8h + 3} , 8h + 3; ) guarantees that the ESNP system stops a successful
computation with the neurons n + 1, n + 2, and n + 3 being empty. �

As can be seen from the construction given in the preceding proof, the only
infinite checking sets are of the form N – corresponding with {a}

∗

in the normal
forms proved in [10].
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Corollary 2. Any recursively enumerable set of n-dimensional vectors can be
generated by an ESNP system with n + 3 neurons.

Proof. The result directly can be proved by using Proposition 1 and a similar
construction as that one elaborated in the proof of Theorem 2, yet it also follows
from Theorem 2 by just taking the number of spikes in the output neurons as the
value of the components of the n-dimensional vector, i.e., by taking the corre-
sponding Parikh set of the generated language (because PsRE (n) = RE (Nn)).
�

5 Summary and Further Variants

In this paper, we have considered various extensions of the original model of spik-
ing neural P systems, some of them arising from biological motivations, some
others being more of mathematical interest than having a biological interpre-
tation. The extensions considered in more detail here allowed for establishing
computational completeness in an easy way, and moreover, we got a quite nat-
ural characterization of semilinear sets of (vectors of) non-negative integers and
regular languages, respectively, by finite extended spiking neural P systems with
a bounded number of neurons. On the other hand, in the future some other
restrictions should be investigated allowing for the characterization of sets in a
family between the families of regular and recursively enumerable sets (of vectors
of non-negative integers or strings).

A quite natural feature found in biology and also used in the area of neural
computation is that of inhibiting neurons or connections between neurons. We
can include this feature in our extended model of spiking neural P systems
considered above in the following way: we also allow negative values for the
weights w in the productions (l, w, t), i.e., we take w ∈ Z; when this “package”
arrives at the target cell l, then it causes this cell to be closed for t time steps
(all such negative values are summed up at the moment they arrive at the cell
provided it is not closed). Then the definition of finite extended spiking neural
P systems with inhibiting spikes still only demands all checking sets to be finite,
and it is easy to see that finite extended spiking neural P systems with inhibiting
spikes still characterize the regular sets. Inhibiting cells can also be achieved in
another way in a variant closely related to the original model of spiking neural
P systems by specifying certain connections from one neuron to another one
as inhibiting ones – the spikes coming along such inhibiting axons then again
would close the target neuron for a time period given by the sum of all inhibiting
spikes.

The negative values propagated along the axons also allow for another in-
terpretation (than that of inhibiting the cell for a specific time period) when
using integer values in the cells: we can simply sum up all the values arriving
at a specific moment at the target cell thus yielding an integer number to be
added to the current contents of the cell. In that way, we obtain a quite natural
mechanism for generating sets of (vectors of) integer numbers. The checking sets
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E in the rules (i, E, k, d; r) then have to be regular sets of integer numbers, i.e.,
E ⊆ REG (Z). Moreover, these systems working with vectors of integers might
also allow for a comparison with vector addition systems (e.g., as done in [9] for
catalytic P systems). Finally, we might even generalize this variant to finitely
generated commutative groups, as each such group is isomorphic to Z

k × H for
some k ≥ 1 and a finite commutative group H ; the elements of Z

k × H can
easily be represented by k + 1 neurons, and in this way, for example, recursively
enumerable subsets of Z

k ×H can be computed in a similar way as described in
the preceding section.
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