Graphical Modelling of Higher Plants Using P Systems

Álvaro Romero–Jiménez
Miguel A. Gutiérrez–Naranjo
Mario J. Pérez–Jiménez

Research Group on Natural Computing
Department of Computer Science and Artificial Intelligence
University of Seville, Spain
Goal

Modelling developmental processes of plants

- Simple developmental algorithms
- Self-similarity
- L-systems with geometric features
Outline

1. Lindenmayer Systems
2. Graphical Representation of Lindenmayer Systems
3. Restricted P Systems with Membrane Creation
4. Graphical Representation of Restricted P Systems with Membrane Creation
5. Final Remarks
String OLL-system

\[G = \langle V, \omega, P \rangle \]

- \(V \) alphabet
- \(\omega \in V^+ \) axiom
- \(P \) production rules

Production rule: \(a \rightarrow v \)

- \(a \in V \) predecessor
- \(v \in V^* \) successor
- For any \(a \in V \) at least one \(a \rightarrow v \in P \)
Evolution of L-Systems

Parallel rewriting

\[\rho \in V^* \text{ directly derives from } \mu \in V^+: \mu \Rightarrow \rho \]

- \[\mu = a_1 \ldots a_m, \text{ with } a_i \in V \]
- \[\rho = \phi_1 \ldots \phi_m, \text{ with } \phi_i \in V^* \]
- \[a_i \rightarrow \phi_i \in P, \text{ for all } i = 1, \ldots, m \]

Sequence of strings \(\omega, \mu_1, \mu_2, \ldots \) generated recursively
Outline

1. Lindenmayer Systems
2. Graphical Representation of Lindenmayer Systems
3. Restricted P Systems with Membrane Creation
4. Graphical Representation of Restricted P Systems with Membrane Creation
5. Final Remarks

Workshop on Membrane Computing 2006
Turtle graphics

Step size and turn angle fixed

Graphical commands:

- F: move a step forward drawing a line
- f: move a step forward not drawing a line
- $+$: turn left
- $-$: turn right
L-System Representation: Example

Step size: 2 cm
Turn angle: 60 degrees

\[F + F -- F + F \]
Consider a push-down stack.

Additional graphical commands:

- [: push current state onto the stack
-]: pop a state from the stack
Tree Structure Representation: Example

Step size: 2 cm Turn angle: 22.5 degrees

\[F[+F[+F][F]][F][F][−F]] \]
Overall Picture

Strong points:
• Simple
• Deeply studied
• Many software available

Drawbacks:
• Artificial
• Unrealistic
Outline

1. Lindenmayer Systems
2. Graphical Representation of Lindenmayer Systems
3. Restricted P Systems with Membrane Creation
4. Graphical Representation of Restricted P Systems with Membrane Creation
5. Final Remarks
Membrane Structures Are Trees
Membrane Structures Are Trees

![Diagram of membrane structures and a tree structure]
Membrane Structures Are Trees
Membrane Structures Are Trees
Basic Requirements

Looking for a model:

- As simple as possible
- With membrane creation

Drop from P systems with membrane creation everything not needed
Restricted P Systems with Membrane Creation

\[\Pi = (O, \mu, w_1, \ldots, w_m, R) \]

- \(O \) alphabet of objects
- \(\mu \) initial membrane structure
- \(w_i \) multiset initially placed in region \(i \)
- \(R \) finite set of evolution rules:
 - \(a \rightarrow v \), with \(a \in O \), \(v \) multiset over \(O \)
 - \(a \rightarrow [v] \), with \(a \in O \), \(v \) multiset over \(O \)

A unique label for the membranes, so \(R \) global set of rules
Outline

1. Lindenmayer Systems
2. Graphical Representation of Lindenmayer Systems
3. Restricted P Systems with Membrane Creation
4. Graphical Representation of Restricted P Systems with Membrane Creation
5. Final Remarks
Graphical Model for P Systems

Branch length and rotation angle fixed

Depth-first search of the membrane structure

Graphical objects:

- F: draw the branch
- $+$: rotate the branch to the left
- $-$: rotate the branch to the right
Π₁ components:

- Alphabet: \(\{ F, +, -, B_L, B_R, B_{S_1}, B_{S_2} \} \)
- Initial membrane structure and multiset:
 \([FB_L B_{S_1}] \)
- Rules:

\[
\begin{align*}
B_{S_1} & \rightarrow [FB_{S_2} B_R] & B_L & \rightarrow [+FB_L B_{S_1}] \\
B_{S_2} & \rightarrow [FB_L B_{S_1}] & B_R & \rightarrow [-FB_L B_{S_1}]
\end{align*}
\]
P System Representation: Example 1

Branch length: 2 cm Rotation angle: 22.5 degrees
P System Representation: Example 1

Branch length: 2 cm Rotation angle: 22.5 degrees
P System Representation: Example 1

Branch length: 2 cm
Rotation angle: 22.5 degrees
Extended Graphical Model for P Systems

Fix lengths \(l \) and \(w \) and angle \(\delta \)

Graphical objects: \(F \), \(W \), + and −

For each membrane draw a branch with:

- Length: \((\text{multiplicity of } F) \times l\)
- Width: \((\text{multiplicity of } W) \times w\)
- Rotation angle:
 \((\text{multiplicity of } + \text{ minus multiplicity of } -) \times \delta\)
Π_2 components:

- **Alphabet:** \(\{ F, W, +, -, L, E, B_L, B_R, B_{S_1}, B_{S_2} \} \)
- **Initial membrane structure and multiset:**
 \[[LEWFB_LB_{S_1}] \]
- **Rules:**

 \[
 \begin{align*}
 B_{S_1} & \rightarrow [LEWFB_{S_2}B_R] \\
 B_{S_2} & \rightarrow [LEWFB_LB_{S_1}] \\
 L & \rightarrow LF \\
 B_L & \rightarrow [+LEWFB_LB_{S_1}] \\
 B_R & \rightarrow [-LEWFB_LB_{S_1}] \\
 E & \rightarrow EW
 \end{align*}
 \]
P System Representation: Example 2

l: 1 cm w: 1 pt δ: 22.5 degrees

\[LEWFB_L B_{S_1} \]
P System Representation: Example 2

l: 1 cm \(w \): 1 pt \(\delta \): 22.5 degrees

\[LEW^2F^2 \]
\[LEWFB_{S_2}B_R \]
\[+LEWFB_{L}B_{S_1} \]
P System Representation: Example 2

\[l: 1 \text{ cm} \quad w: 1 \text{ pt} \quad \delta: 22.5 \text{ degrees} \]
Specimen-to-Specimen Variation

Stochastic P systems: associate each rule with a probability

\(\Pi_3 \) components:

- Alphabet: \(\{F, W, +, -, L, E, T, B\} \)
- Initial membrane structure and multiset: \([LEWFTB]\)
- Rules:

\[
\begin{align*}
T & \rightarrow [LEWFTB] & L & \rightarrow LF & E & \rightarrow EW \\
B & \xrightarrow{2/3} [+LEWFTB] & B & \xrightarrow{1/3} [-LEWFTB]
\end{align*}
\]
Trees generated by Π_3

$l: 1$ cm $\quad w: 1$ pt $\quad \delta: 22.5$ degrees
Trees generated by Π_3

l: 1 cm \hspace{1cm} w:1 pt \hspace{1cm} \delta$: 22.5 degrees
Trees generated by Π_3

l: 1 cm w: 1 pt δ: 22.5 degrees
Specimen-to-Specimen Variation

Non-deterministic P systems: consider together all the trees generated by its computations

\(\Pi_4 \) components:

- Alphabet: \(\{ F, W, +, -, L, E, T, B \} \)
- Initial membrane structure and multiset: \([LEWFTB]\)
- Rules:

\[
\begin{align*}
T & \rightarrow [LEWFTB] \quad L \rightarrow LF \quad E \rightarrow EW \\
B & \rightarrow [+LEWFTB] \quad B \rightarrow [-LEWFTB]
\end{align*}
\]
Trees generated by Π_4

$l: 1\ cm \quad w: 1\ pt \quad \delta: 22.5\ degrees$
Outline

1. Lindenmayer Systems
2. Graphical Representation of Lindenmayer Systems
3. Restricted P Systems with Membrane Creation
4. Graphical Representation of Restricted P Systems with Membrane Creation
5. Final Remarks
P Systems versus L-Systems

Two things to investigate:

- Complexity of the representation of the branching structures
- Computational efficiency to generate the graphical representations
Conclusions

Strong points of P systems:

- Closer to reality
- Supports differentiation into small units
- Computational power

Drawbacks:

- No software available (¿Translations to L-systems?)
- Parsing algorithm more complex
Extensions of the model

- Labelling of the membranes
- Communication rules
- Rules of the form $o \rightarrow \mu$, with μ a membrane structure
Thanks for your attention