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Key points of the systems 
definition

• Maximal parallelism

• Result at halting, in the elementary 
membrane



The power of some classes of P 
systems with small symport/antiport

• OP3(sym1,anti1) and OP3(sym2) are 
computationally complete

• OP1(sym1,anti2/1) is computationally
complete

• OP1(sym3) is complete modulo 7 
addditional objects

•OP2(sym1,anti1) and OP2(sym2) are complete 
modulo some additional objects



TheGarbage is Unavoidable:
If Π∈OP2(sym1,anti1) then
0∈N(Π) → N(Π)∈NFIN

• Suppose N(Π)
is infinite

• Suppose N(Π)
contains 0: it halts

• s0 is in region 1=> 
so is s1,..., sn

• contradiction nothing here
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Symport Garbage: If Π∈OP2(sym2) 
then 0∈N(Π) → N(Π)∈NFIN

• Call I0 the set of objects from O-E that we know must be in the environment at
halting with empty region 2; I0 :=Ø.

• Assume N(Π) is infinite: it is necessary (though not sufficient)
to bring in some object a∈E∪I0 : (ab,in)∈R1 (b∈O-E).

b  a
or

c
•(b,out): cannot halt with empty region 2.
•(bc,out), c∈O-E: c doesnot stay in the environment
(otherwise it doesnot help increasing the number of objects
inside the system).
•Still, c cannot end up in region 1 if b is there.  Add c to I0 and repeat.
•(bc,out), c∈E: repeat with c instead of a.

•If a system can increase the number of objects inside it, then it cannot halt
without any objects in region 2.
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Outline of the proof

• We simulate a d -counter automaton
M=(d, Q, q0 , qf , P).

Q={qi |0 � i � f } states, q0 initial, qf final,
P finite set of instructions.
“ increment” j: (qi → ql ,k+)
“decrement” j: (qi → ql ,k-)
“ test for zero” j: (qi → ql ,k=0)



Construction

Notations: C={ ck} , k∈{ 1,…,d} , Q’={ qi’ } , qi ∈ Q.



The functioning of this system may 
be split into three stages: 

• preparation of the system for the 
computation.

• simulation of instructions of the counter 
automaton.

• terminating the computation.



Preparation
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Main stage: representation

qi :current state
supply of counters

ck :counters

supply of states
supply of instructions
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Termination
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Conclusion
• P systems with minimal symport/antiport and two 

membranes: the optimal result is obtained.
– One additional object in the output membrane is 

necessary and sufficient for computational completeness.

• For P systems with two membranes and symport
of weight 2,
– one object is necessary; sufficiency is open.

• It is still open what finite sets containing zero can 
be generated by these systems
– Conjecture: { { m|m�n} n∈N}


