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Abstract. In this paper we present a new strategy to apply the oper-
ators in evolutionary algorithms. This strategy is inspired from the way
the evolution rules are used in membrane systems. Moreover, analyz-
ing the similarities and differences between the evolutionary operators
and the evolution rules in membrane systems, between membrane struc-
tures and communication topologies, and between communication rules
in membrane systems and communication policies in evolutionary algo-
rithms, we introduce and a hybrid distributed evolutionary algorithm
and test it for continuous optimization problems.

1 Introduction

Membrane systems and evolutionary algorithms are computation models in-
spired by nature, both based on applying some evolution(ary) rules to a (multi)set
of simple or structured objects. Both models have distributed features. Mem-
brane systems represent a suitable framework for distributed algorithms [2], and
evolutionary algorithms allow natural extensions for distributed implementation
[12].

A membrane system consists of a hierarchy of membranes that do not inter-
sect, with a distinguishable membrane, called the skin membrane, surrounding
them all. A membrane without any other membranes inside is elementary, while
a non-elementary membrane is a composite membrane. The membranes produce
a demarcation between regions. For each membrane there is a unique associ-
ated region. The space outside the skin membrane is called the environment.
Because of this one-to-one correspondence we sometimes use membrane instead
of region. Regions contain multisets of objects, evolution rules and possibly other
membranes. Only rules in a region delimited by a membrane act on the objects in
that region. The multisets of objects from a region correspond to the “chemicals
swimming in the solution in the cell compartment”, while the rules correspond
to the “chemical reactions possible in the same compartment”. The rules must
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contain target indications, specifying the membrane where the new objects ob-
tained after applying the rule are sent. The new objects either remain in the
same region when they have a here target, or they pass through membranes, in
two directions: they can be sent out of the membrane delimiting a region from
outside, or can be sent in one of the membranes delimiting a region from inside,
precisely identified by its label. In a step, the objects can pass only through one
membrane. There exist many variants and classes of membrane systems; many
of them are introduced in [7].

Evolutionary algorithms are reliable in solving hard problems in the field of
discrete and continuous optimization. They are approximation algorithms which
achieve a trade-off between solution quality and computational costs. Despite the
large variety of evolutionary algorithms (genetic algorithms, evolution strategies,
genetic programming, evolutionary programming), all of them are based on the
same idea: evolve a population of candidate solutions by applying some rules
inspired by biological evolution: recombination (crossover), mutation, and se-
lection [3]. An evolutionary algorithm acting on only one population is similar
to a one-membrane system. Distributed evolutionary algorithms which evolve
separate but communicating (sub)populations are more like membrane systems.

It is natural to ask questions as: How similar are membrane computing and
distributed evolutionary computing? Can ideas from membrane computing im-
prove the evolutionary algorithms, or vice-versa? An attempt to build a bridge
between membrane computing and evolutionary computing is given in [6], where
a membrane algorithm is developed by using a membrane structure together with
ideas from genetic algorithms (crossover and mutation operators) and from meta-
heuristics for local search (tabu search). In this paper we go further and deeper,
and analyze the relationship between different membranes structures and dif-
ferent communication topologies specific to distributed evolutionary algorithms.
Moreover, we develop a hybrid distributed evolutionary algorithm for continuous
optimization characterized through a non-standard, membrane systems inspired,
strategy for applying the evolutionary operators.

The paper is organized as follows. In Section 2 we analyze the correspondence
between evolutionary operators and evolution rules. As a result of this analysis,
we propose a new strategy of applying the evolutionary operators. Section 3
is devoted to the similarities between membrane structures and communication
topologies on one hand, and between communication rules in membrane systems
and communication policies in evolutionary algorithms on the other hand. In
Section 4 we introduce a new hybrid distributed evolutionary algorithm, and we
test its effectiveness in solving continuous optimization problems.

2 Evolutionary Operators and Evolution Rules

Evolutionary algorithms (EAs) working on only one population (panmictic EAs)
can be interpreted as particular membrane systems having only one membrane.
Inside this single membrane there is a population of candidate solutions for
the problem to be solved. Usually a population is an m-uple of n-dimensional
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vectors: P = x1 . . . xm, xi = (x1
i , . . . , x

n
i ) ∈ D, where D is a discrete or a

continuous domain depending on the problem to be solved. The evolutionary
process consists in applying the recombination, mutation and selection operators
to the current population in order to obtain a new population.

Recombination (crossover): The aim of this operator is to generate new elements
from a set of elements (called parents) selected from the current population. Thus
we have a mapping R : Dr → Dq , where usually q ≤ r. Typical examples of
recombination operators are:

r = q = 2, R((u1, . . . , un), (v1, . . . , vn)) =

((u1, . . . , uk, vk+1, . . . , vn), (v1, . . . , vk, uk+1, . . . , un)) (1)

and

r arbitrary , q = 1, R(xi1 , . . . , xir
) =

1

r

r
∑

j=1

xij
(2)

The first type of mutation corresponds to one point crossover (where k ∈ {1, . . . ,
n − 1} is an arbitrary cut point) used in genetic algorithms, while the second
example corresponds to intermediate recombination used in evolution strategies
[3].

Mutation: The aim of this operator is to generate a new element by perturbing
one element from the current population. Thus we work with a mapping M :
D → D defined by M((u1, . . . , un)) = (v1, . . . , vn). Typical examples are:

vi =

{

1 − ui with probability pm

ui with probability 1 − pm
and vi = ui+N(0, σi), i = 1, n

(3)
The first example is used in genetic algorithms based on a binary coding (ui ∈
{0, 1}), while the second one is typical for evolution strategies. N(0, σi) denotes a
random variable with normal distribution, of zero mean and standard deviation
σi.

Selection: It is used to construct a new set of elements starting from the current
population such that the best elements with respect to the objective function
of the optimization problem to be solved are favored. It does not generate new
configurations, but only sets of existing (not necessarily distinct) configurations.
Thus it maps Dm to Dr and can be used in two main situations: selection of
parents for recombination (in this case r < m, and the parents selection is not
necessarily based on the quality of elements), and selection of survivors (in this
case r = m, and the survivors are stochastically or deterministically selected by
taking into account their quality with respect to the optimization problem). In
the following, the mapping corresponding to parents selection is denoted by Sp

and the mapping corresponding to survivors selection is denoted by Ss.
A particular evolutionary algorithm is obtained by combining these evolu-

tionary operators and by applying them iteratively to a population. Typical ways
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of combining the evolutionary operators lead to the main evolutionary strate-
gies: generational, and steady state. In the generational (synchronous) strategy,
at each step a population of new elements is generated by applying recombination
and mutation. The population of the next generation is obtained by applying
selection to the populations of new and old elements. The general structure of a
generational EA is presented in Algorithm 1 where X(t) denotes the population
corresponding to generation t and Z denotes the population of offsprings. The
symbol ∪+ denotes an extended union, which allows multiple copies of the same
element (as in multisets). The mapping M is the extension of M to Dq , i.e.
M(xi1 , . . . , xiq

) = (M(xi1 ), . . . ,M(xiq
)).

Algorithm 1 Generational Evolutionary Algorithm

1: Random initialization of population X(0)
2: t := 0
3: repeat

4: Z := ∅
5: for all i ∈ {1, . . . , m} do

6: Z := Z ∪+ (M◦R ◦ Sp)(X(t))
7: end for

8: X(t + 1) := Ss(X(t) ∪+ Z)
9: t := t + 1

10: until a stopping condition is satisfied

In the steady state (asynchronous) strategy, at each step a new element is gen-
erated by recombination and mutation, and assimilated into the population if it
is good enough (e.g. better than one of its parents, or than the worst element in
the population). More details are in Algorithm 2.

Algorithm 2 Steady State Evolutionary Algorithm

1: Random initialization of population X(0)
2: t := 0
3: repeat

4: z := (M◦R ◦ Sp)(X(t))
5: X(t + 1) := Ss(X(t) ∪+ z)
6: t := t + 1
7: until a stopping condition is satisfied

The simplest way to present a generational or a steady state evolutionary
algorithm as a membrane system is to consider the entire population as a struc-
tured object in a membrane, and the compound operator applied as one evolution
rule which includes recombination, mutation and selection. Such an approach
represents a rough and coarse handling which does not offer flexibility. A more
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flexible approach would be to consider each evolutionary operator as an evolution
rule.

Evolutionary operators are usually applied in an ordered manner (as in Al-
gorithms 1 and 2): first parents selection, then recombination and mutation,
and finally survivors selection. Starting from the way the evolution rules are
applied in a membrane system, we consider that the rules can be independently
applied to the population elements, meaning that no predefined order between
the operators is imposed. At each step any operator can be applied, up to some
restrictions ensuring the existence of the population. The recombination and
mutation operators R and M can be of any type, with possible restrictions
imposed by the coding variant. By applying these operators, new elements are
created. These elements are unconditionally added to the population. Therefore
by applying the recombination and mutation operators, the population size is
increased. When the population size reaches an upper limit (e.g. twice the size
of the initial population), then R and M are inhibited.

The role of the selection is to modify the distribution of elements in the
population by eliminating or by cloning some elements. A simple selection oper-
ator could be defined by eliminating the worst element of the population, or by
cloning the best element of the population. When selection is applied by cloning,
then the population size is increased and selection is inhibited whenever the size
reaches a given upper bound. On the other hand, when selection is applied by
eliminating the worst element, the population size is reduced, and selection is
inhibited whenever the size reaches a given lower bound.

By denoting with x1 . . . xm (xi ∈ D) the entire population, with xi1 . . . xiq

an arbitrary part of the population, with x∗ the best element and with x− the
worst element, the evolutionary operators can be described more in the spirit of
evolution rules from membrane systems as follows:

Rule 1 (recombination): xi1 . . . xir
→ xi1 . . . xir

x′

i1
. . . x′

iq
where (xi1 , . . . , xir

) =

Sp(x1, . . . , xm) is the set of parents defined by the selection operator Sp, and
(x′

i1
, . . . , x′

iq
) = R(xi1 , . . . , xir

) is the offspring set obtained by applying the
recombination operator R to this set of parents;

Rule 2 (mutation): xi → xix
′

i where x′

i = M(xi) is the perturbed element
obtained by applying the mutation operator M to xi;

Rule 3a (selection by deletion): x− → λ, meaning that the worst element (with
respect to the objective function) is eliminated from the population;

Rule 3b (selection by cloning): x∗ → x∗x∗ meaning that the best element (with
respect to the objective function) is duplicated.

By following the spirit of membrane computing, these rules should be applied
in a fully parallel manner. However, in order to avoid going too far from the
classical way of applying the operators in evolutionary algorithms, we consider
a sequential application of rules. Thus we obtain an intermediate strategy: the
evolutionary operators are applied sequentially, but in an arbitrary order. Such a
strategy (which uses a deletion type selection) based on a probabilistic decision
concerning the operator to be applied at each step is described in Algorithm
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3, where pR, pM , pS ∈ (0, 1) are the probabilities of applying recombination,
mutation and selection, respectively and satisfy pR + pM + pS = 1. By applying
the evolutionary operators in such a fully asynchronous way, we obtain a more
flexible algorithm which works with variable size populations. In Algorithm 3
the population size corresponding to iteration t is denoted by m(t).

We can expect that the behaviour of such an algorithm be different from the
behaviour of more classical generational and steady state algorithms. However,
from a theoretical viewpoint, such an algorithm can be still modelled by a Markov
chain and the convergence results still hold [10]. This means that if we use a
mutation operator based on a stochastic perturbation described by a distribution
having a support which covers the domain D (e.g. normal distribution) and an
elitist selection (the best element found during the search is not eliminated from
the population), then the best element of the population converges in probability
to the optimum.

Algorithm 3 Fully Asynchronous Evolutionary Algorithm

1: Initialize the population X(0) = x1(0) . . . xm(0)(0)
2: t := 0
3: repeat

4: generate a uniform random value u ∈ (0, 1)
5: if (u < pR) ∧ (m(t) < 2m(0)) then

6: apply R1 (recombination)
7: end if

8: if (u ∈ [pR, pR + pM )) ∧ (m(t) < 2m(0)) then

9: apply R2 (mutation)
10: end if

11: if (u ∈ [pR + pM , 1]) ∧ (m(t) > m(0)/2) then

12: apply R3a (selection by deletion)
13: end if

14: t := t + 1
15: until a stopping condition is satisfied

The difference appears with respect to the finite time behavior of the algo-
rithm, namely the ability to approximate (within a certain desired precision)
the optimum in a finite number of steps. Preliminary tests suggest that for some
optimization problems, the fully asynchronous strategy works better than the
generational and steady state strategies; numerical results are presented in Sec-
tion 4. This means that using ideas from the application of evolution rules in
membrane systems, we can obtain new evolutionary strategies with different
dynamics.

3 Communication Topologies and Policies

As it has been stated in the previous section, a one-population evolutionary al-
gorithm can be mapped into a one-membrane system with rules associated to
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the evolutionary operators. Closer to membrane computing are the distributed
evolutionary algorithms which work with multiple (sub)populations. In each sub-
population the same or different evolutionary operators can be applied leading
to homogeneous or heterogeneous distributed EAs, respectively. Introducing a
structure over the population has different motivations [12]: (i) it achieves a
good balance between exploration and exploitation in the evolutionary process
in order to prevent premature convergence (convergence to local optima) in the
case of global optimization problems; (ii) it stimulates the population diversity
in order to deal with multimodal optimization problems or with dynamic opti-
mization problems; (iii) it is more suitable to parallel implementation.

Therefore, besides the possibility of improving the efficiency by parallel imple-
mentation, structuring the population in communicating subpopulations allows
developing new search mechanisms which behave differently than their serial
counterparts [12]. The multi-population model of the evolutionary algorithms,
also called island-model, is based on the idea of dividing the population in some
communicating subpopulations. In each subpopulation is applied an evolutionary
algorithm for a given number of generations, then a migration process is started.
During the migration process some elements can change their subpopulations,
or clones of some elements can replace elements belonging to other subpopula-
tions. The main elements which influence the behaviour of a multi-population
evolutionary algorithm are the communication topology and the communication
policy. The communication topology specifies which subpopulations are allowed
to communicate while the communication policy describes how is ensured the
communication. The communication topology in a distributed evolutionary al-
gorithm plays a similar role as the membranes structure plays in a membrane
system. On the other hand the communication policy in distributed evolutionary
algorithms is related to the communication rules in membrane systems.

3.1 Communication Topologies and Membrane Structures

The communication topology describes the connections between subpopulations.
It can be modelled by a graph having nodes corresponding to subpopulations,
and edges linking subpopulations which communicate in a direct manner. Ac-
cording to [1], typical examples of communication topologies are: fully connected
topology (each subpopulation can communicate with any other subpopulation),
linear or ring topology (only neighbour subpopulations can communicate), star
topology (all subpopulations communicate through a kernel subpopulation).
More specialized communication topologies are hierarchical topologies [5], and
hypercube topologies [4]. The fully connected, star and linear topology can be
easily described by using hierarchical membrane structures which allows trans-
ferring element either in a inner or in the outer membrane (see Figure 1).

(a) Fully connected topology: Let us consider a number of s fully connected sub-
populations. The fully connected topology can be modelled by using s + 1
membranes, namely s elementary membranes and one skin membrane con-
taining them (see Figure 1(a)). The elementary membranes correspond to
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Fig. 1. Communication topologies in distributed evolutionary algorithms and their
corresponding membranes structures. (a) Fully connected topology; (b) Star topology;
(c) Linear topology.

the given s subpopulations, and they contain both evolution rules and com-
munication rules. The skin membrane plays only the role of communica-
tion environment, thus it contains only communication rules and the objects
which have been transferred from the inner membranes. The transfer of an
element between two inner membranes is based on two steps: the transfer
of the element from the source membrane to the skin membrane and the
transfer of the element from the skin membrane to the target membrane.
Another structure which corresponds to a fully connected topology is that
associated to tissue P-systems.

(b) Star topology: The membrane structure corresponding to a star topology
with s subpopulations is given by one skin membrane corresponding to the
kernel subpopulation, and s − 1 elementary membranes corresponding to
the other subpopulations (see Figure 1(b)). The main difference from the
previous structure associated to a fully connected topology is that the skin
membrane has not only the role of an environment for communication, but
it contains also some evolution rules.

(c) Linear topology: In this case a subpopulation p can communicate only with
its neighbour subpopulations p + 1 and p − 1. The corresponding structure
is given by nested membranes, each membrane corresponding to a subpop-
ulation (see Figure 1(c)).

Different situations appear in the case of ring and other topologies [4] which are
associated with cyclic graph structures. In these situations the corresponding
membrane structure is given by a net of membranes, or tissue P systems.
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3.2 Communication Policies and Communication Rules

A communication policy refers to the way the communication is initiated, the
way the migrants are selected, and the way the immigrants are incorporated into
the target subpopulation. Communication can be initiated in a synchronous way
after a given number of generations, or in an asynchronous way when a given
event occurs. The classical variants of migrants selection are random selection
and selection based on the fitness value (best elements migrate and the immi-
grants replace the worst elements of the target subpopulation). The commu-
nication policies are similar to communication rules in membrane computing,
meaning that all communication steps can be described by some typical com-
munication rules in membrane systems.

Example: Let us consider the communication by random migration in the case of
a fully connected topology (Figure 1(a)). This means that whenever a migration
step is initiated, any element from a subpopulation Si can be selected (with a
given probability) to migrate to a (also randomly selected) target subpopulation
Sj .

There are two main variants for transferring elements between subpopula-
tions: (i) by sending a clone of an element from the source subpopulation to the
target subpopulation (pollination); (ii) by moving an element from the source
subpopulation to the target one (plain migration). If the subpopulations size
should be kept constant, then in the pollination case for each new incorporated
element, another element (e.g. a random one, or the worst one) is deleted. In the
case of plain migration a replacing element (usually randomly selected) is sent
from the target subpopulation to the source one.

In order to describe a random pollination process between s subpopulations
by using communication rules specific to a membrane system, we consider the
membrane structure described in Figure 1(a). Each elementary membrane corre-
sponds to a subpopulation, and besides the objects corresponding to the elements
in the subpopulation, it also contain some objects which are used for communi-
cation. These objects, denoted by rid, are identifiers of the regions with which
the subpopulation corresponding to the current region can communicate (in a
fully connected topology of s subpopulations the identifiers belong to {1, . . . , s}).
On the other hand, when the migration step is initiated, a given set of copies of a
migration symbol µ is created into each elementary membrane. The multiplicity
of µ is related with the migration probability pm (e.g. it is bmpmc, where m is
the size of subpopulation in the current region). Possible communication rules,
for each type of membrane, describing the pollination process are presented in
the following:

Elementary membranes. Let us consider the membrane corresponding to a sub-
population Si. There are two types of rules: an exporting rule ensuring the trans-
fer of an element to the skin membrane which plays the role of an communication
environment, and an assimilation rule ensuring, if it is necessary, that the sub-
population size is kept constant.
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An export rule can be described as:

RSi

export : µxSirSi

id → (xSi , here)(xSirSi

id d, out) (4)

An assimilation rule can be described as:

RSi

ass : dxSi → λ (5)

xSi denotes in both rules an arbitrary element from the subpopulation Si, and
rSi

id identifies the region where clones of the elements from the subpopulation Si

can be sent. At each application of RSi

export a copy of the symbol µ is consumed,

and a copy of a deletion symbol d is created in the skin membrane.
Skin membrane. The communication rule corresponding to the skin membrane
is:

R0 : dxSirSi

id → (dxSi , inid) (6)

In the case of plain random migration, any element xSi from a source subpop-
ulation Si can be exchanged with an element xSj from a target subpopulation
Sj . Such a communication process is similar with that in tissue P systems [7]
described as (i, xSi/xSj , j). Other communication policies (e.g. those based on
elitist selection or replacement) can be similarly described.

4 A Hybrid Approach for Continuous Optimization

Based on the previous comparative analysis of membrane systems and dis-
tributed evolutionary algorithms we develop a new evolutionary algorithm which
combines ideas from both membrane and distributed evolutionary systems.

Algorithm description. Let us consider a membrane structure consisting of a skin
membrane containing s elementary membranes. Each elementary membrane i
contains a subpopulation Si on which a fully asynchronous evolutionary algo-
rithm as that described in Section 2 is applied. Initially all subpopulations have
the same size m(0), but during the evolution their sizes can vary. The skin mem-
brane contains also a subpopulation of elements, but different transformation
rules are applied here (e.g. local search rules instead of evolutionary operators).
This structure corresponds to a star communication topology (Figure 1b) which
is less frequently used in distributed evolutionary algorithms. The communica-
tion is only between S0 (corresponding to skin membrane) and the other subpop-
ulations. The algorithm consists of two stages which are repeatedly applied until
a stopping condition is satisfied. The general structure is described in Algorithm
4.

The evolutionary stage consists in applying an evolutionary algorithm on
each of the subpopulations in inner membranes for τ iterations. The evolutionary
stage is applied in parallel to all subpopulations. The subpopulations in inner
membranes are initialized only at the beginning, thus the next evolutionary
stage starts from the current state of the population. In this stage the only
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transformation of the population in the skin membrane consists in applying a
local search procedure to the best element of the population.

The communication stage consists in transferring clones of the best element
from the inner membranes to the skin membrane by applying the rule x∗ →
(x∗, here)(x∗, out) in each elementary membrane. Moreover, the worst elements
from the inner membranes are replaced with randomly selected elements from the
skin membrane. If the subpopulation S0 should have more than s + 1 elements,
then at each communication stage some randomly generated elements are added.
The effect of such a communication strategy is that the worst elements in inner
membranes are replaced with the best elements from other membranes or with
randomly generated elements. In order to ensure the elitist character of the
algorithm, the best element from the skin membrane is conserved at each step.
It represents the approximation of the optimum we are looking for.

Algorithm 4 A Hybrid Approach

1: for all i ∈ {0, . . . , s} do

2: Random initialization of the subpopulation Si

3: end for

4: repeat

5: for all i ∈ {1, . . . , s} do

6: Apply an EA to Si for τ steps
7: end for

8: Apply local search to the best element in S0

9: Reset subpopulation S0 (all elements in S0 excepting for the best one are deleted)
10: for all i ∈ {1, . . . , s} do

11: send a clone of the best element from Si to S0

12: end for

13: add random elements to S0 (if its size should be larger than s + 1)
14: for all i ∈ {1, . . . , s} do

15: Replace the worst element of Si with a copy of a randomly selected element
from S0

16: end for

17: until a stopping condition is satisfied

The evolutionary algorithm applied in each subpopulation Si (i = 1, s) can
be of any type. In our experimental analysis we used two variants:

Variant 1. The first variant is a generational algorithm which uses only one varia-
tion operator inspired from differential evolution algorithms [11]. It combines the
recombination and mutation operators, so an offspring zi = R(xi, x∗, xr1

, xr2
, xr3

)
is obtained by

zj
i =

{

γxj
∗ + (1 − γ)(xj

r1
− xj

∗) + F (xj
r2

− xj
r3

)N(0, 1), with probability p

xj
i , with probability1− p,

(7)
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where r1, r2 and r3 are random values from {1, . . . , m}, x∗ is the best element
of the population, F ∈ (0, 2], p ∈ (0, 1] and γ ∈ [0, 1]. An entire population of
offsprings z1 . . . zm is constructed by applying the above rule. The survivors are
selected by comparing the parent xi with its offspring zi and by choosing the
best one.
Variant 2. The second variant is based on the same recombination operator as in
Variant 1, but it is combined with the fully asynchronous strategy described in
Algorithm 3. The selection is based only on the deletion rule (Rule 3a). Each of
these two types of rules (recombination combined with mutation and selection)
is applied with a given probability (e.g. pR = pS = 0.5, pM = 0).

Algorithm 4 is somewhat similar to the membrane algorithm proposed by
Nishida in [6]. Both are hybrid approaches which combine evolutionary search
with local search, and are based on a communication structure inspired by mem-
brane systems. However there are some significant differences between these two
approaches:

(i) they use different communication topologies: linear topology in the mem-
brane algorithm of [6] vs. star topology in Algorithm 4; therefore they use
different membrane structures (see Figure 2);

(ii) they address different classes of optimization problems: combinatorial opti-
mization vs. continuous optimization;

(iii) they are based on different evolutionary rules (genetic crossover and muta-
tion in [6] vs. differential evolution recombination here), and different local
search procedures (tabu search in [6] vs. Nelder-Mead local search [9] in the
current approach);

(iv) they are characterized by different granularity: micro-populations (e.g. two
elements) but a medium number of membranes (e.g. 50) in [6] vs. medium
sized subpopulations (e.g. 10) but a small number of membranes (e.g. 5);

(v) they are characterized by different communication frequencies: transfer of
elements between membranes at each step in the membrane algorithm vs.
transfer of elements only after τ evolutionary steps have been executed (e.g.
τ = 100).

Experimental analysis. In order to analyze the ability of the fully asynchronous
strategy (Algorithm 3) and of the hybrid approach described above (Algorithm
4) to approximate the solution of continuous optimization problems, we con-
ducted some preliminary numerical experiments. The algorithms have been ap-
plied to some classical test functions (see Table 1) used in empirical analysis
of evolutionary algorithms. All these problems are of minimization type, and
the optimal value is 0. In all these tests the problem size was n = 30. The do-
mains are [−100, 100]n for sphere function, [−32, 32]n for Ackley’s function and
[−600, 600]n for Rastrigin’s function.

The first set of experiments aimed to compare the classical generational and
steady state strategies for panmictic EAs (Algorithms 1 and 2) with the non-
standard one inspired from rules application in membrane systems (Algorithm
3). In all cases the recombination rule was that of differential evolution type
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Fig. 2. (a) Membrane structure of Algorithm 4.(b) Membrane structure of Nishida’s
approach.

given by Equation (7). The parameters controlling the evolutionary algorithm
are chosen as follows: m = 50 (population size), p = F = 0.5 (the control
parameters involved in the recombination rule given in Equation (7)), f∗ = 10−5

(accuracy of the optimum approximation).

Table 1. Test functions

Name Expression

Sphere f(x) =

n
X

i=1

x2
i

Ackley f(x) = −20 exp

 

−0.2

r

Pn

i=1 x2
i

n

!

− exp

 

1

n

n
X

i=1

cos(2πxi)

!

+ 20 + e

Griewank f(x) =
1

4000

n
X

i=1

x2
i −

n
Y

i=1

cos(xi/
√

i) + 1

We consider that the search process is successful whenever it finds a configuration
for which the objective function has a value less than f∗. The ratio of successful
runs from a set of independent runs (in our tests the number of independent runs
of the same algorithm for different randomly initialized populations was 30) is
a measure of the effectiveness of the algorithm. As a measure of efficiency we
use the number nfe of objective function evaluations, both average value and
standard deviation.

Table 2 presents comparative results for generational, steady state and fully
asynchronous strategies for two variants (γ = 0 and γ = 1) of the evolution-
ary operator described by Equation (7). The results of Table 2 suggest that
the fully asynchronous strategy (Algorithm 3) behaves differently than classical
generational and steady state strategies: it is worse in the case of recombina-
tion rules characterized by γ = 0, and better in the case of recombination rules
characterized by γ = 1. This can be explained by the fact that applying the
evolutionary rules in an asynchronous manner reduces the selection pressure.
By combining such a strategy with evolutionary rules characterized by strong
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exploitative character (as is Equation(7) with γ = 1) allows avoiding premature
convergence, while by combining it with a more explorative rule (as in the case
of γ = 0) lead to a slower convergence.

Table 2. Comparison of evolutionary rules applying strategies in a panmictic EA.

Test Generational Steady state Fully asynchronous
function Success 〈nfe〉 Success 〈nfe〉 Success 〈nfe〉

γ = 0

Sphere 30/30 27173±456 30/30 25031±505 30/30 47286± 5170
Ackley 30/30 37490±653 30/30 34785±495 30/30 65364± 6239

Griewank 30/30 28885±846 30/30 26816±1026 22/30 49430 ± 6894

γ = 1

Sphere 0/30 - 30/30 9515±527 30/30 6525± 2274
Ackley 13/30 15876±2015 0/30 - 30/30 7968± 2798

Griewank 7/30 11885±1255 4/30 8837±439 22/30 9586 ± 5229

The second set of experiments aimed to analyze the approximation ability of the
hybrid Algorithm 4. Two variants of this algorithm (one based on a generational
evolutionary algorithm, and the other based on the fully asynchronous variant)
are compared with a more classical generational differential evolution combined
with a random communication strategy [14]. All variants use the recombination
rule described by Equation (7) for γ = 1. The other parameters have been
chosen as in the first set of experiments. The parameters specific to distributed
evolutionary algorithms have been chosen as follows: m(0) = 10 (initial size of
subpopulations; when Algorithm 4 is applied, this size varies between m(0)/2 = 5
and 2m(0) = 20), s = 5 (the number of subpopulations/membranes), τ = 100
(the number of evolutionary steps between two communication steps). In order
to reduce the computational cost, the local search (Nelder Mead procedure) is
not activated at each communication step, but only after 10 communication
steps.

Table 3. Behaviour of distributed EAs: generational EA with random migration vs.
the hybrid approach

Test Generational Algorithm 4 Algorithm 4
function and random migration (variant 1) (variant 2)

Success 〈nfe〉 Success 〈nfe〉 Success 〈nfe〉
Sphere 30/30 62002±5123 30/30 59049±527 30/30 3771± 722
Ackley 1/30 84970 30/30 240675±55217 30/30 3173± 880
Griewank 20/30 62902±4272 12/30 126304±89874 26/30 48724 ± 5044

The results of Table 3 show that the communication strategy based on the mem-
brane structure described in Figure 2(a) combined with the fully asynchronous
evolutionary strategy analyzed in the previous experiment is effective and effi-
cient when is compared to the other two strategies.
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These results suggest that structuring the population as in membrane sys-
tems, and applying the evolutionary operators in an unordered manner, then we
obtain evolutionary algorithms with a new dynamics. This new dynamics leads
to significantly better results for certain evolutionary operators and test func-
tions (see results in Table 3 for variant 2 of Algorithm 4). However the hybrid
approach is not superior to the classical generational variant combined with a
random migration for some evolutionary operators (e.g. variant 1 of Algorithm
4). Such a situation is not unusual in evolutionary computing, being accepted
that no evolutionary algorithm is superior to all the others with respect to all
problems [13].

5 Conclusions

As it has been recently stated in [8], the membrane community is looking for
a relationship, a link between membrane systems and distributed evolutionary
algorithms. We claim that the main similarity is at a conceptual level, and each
important concept in distributed evolutionary computing has a correspondent
in membrane computing. This correspondence is summarized in the following
table:

Membrane system Distributed Evolutionary Algorithm
Membrane(region) Population
Objects Individuals
Evolution rules Evolutionary operators
Membrane structure Communication topology
Communication rules Communication policy

Besides these conceptual similarities, there are some important differences:

(i) membrane systems have an exact notion of computation, while evolutionary
computation is an approximate one;

(ii) membrane computing is based on symbolic representations, while evolution-
ary computing is mainly used together with numerical representations.

Despite these differences, ideas from membrane computing are useful in develop-
ing new distributed meta-heuristics. A first attempt was given by the membrane
algorithm proposed in [6]. However this first approach did not emphasized at all
the important similarities between membrane computing and distributed evolu-
tionary computing. This aspect motivates us to start a depth analysis of these
similarities, having the aim of describing the evolutionary algorithms by using the
formalism of membrane computing. As a result of this analysis, we present in this
paper a non-standard strategy of applying the evolutionary operators. This strat-
egy, characterized by an arbitrary application of evolutionary operators, proved
to be better than the classical generational and steady state strategies when
applied for some continuous optimization problems. On the other hand, based
on the relationship between membrane structures and communication topolo-
gies, we introduce a new hybrid distributed evolutionary algorithm effective in
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solving continuous optimization problems. There are important and significant
differences between our approach and that proposed in [6], and we presented
them in Section 4. One important difference between these two approaches is
related to the efficiency of a parallel implementation, which is influenced by the
communications costs [14]. In our approach the communication rules are ap-
plied less frequently than in the membrane algorithm, and this leads to a lower
communication cost and a more efficient parallel implementation. Algorithms 3
and 4 proposed and analyzed in this paper are good and reliable in approximat-
ing solutions of optimization problems. This fact proves that by using ideas from
membrane computing, new distributed metaheuristic methods can be developed.
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