
Modeling the Dynamical Parallelism of

Bio-Systems

Erzsébet Csuhaj-Varjú1, Rudolf Freund2, Dragoş Sburlan3,4

1 Computer and Automation Institute
Hungarian Academy of Sciences

Kende utca 13–17, H-1111 Budapest, Hungary
csuhaj@sztaki.hu

2 Faculty of Informatics
Vienna University of Technology

Favoritenstr. 9–11, A–1040 Vienna, Austria
rudi@emcc.at

3 Department of Computer Science and Artificial Intelligence
University of Seville,

Av. Reina Mercedes, 41012, Seville, Spain
4 Faculty of Mathematics and Informatics

Ovidius University of Constantza,
124 Mamaia Bd., Constantza, Romania

dsburlan@univ-ovidius.ro

Abstract. Among the many events that occur in the life of biological
organisms are a multitude of specific chemical transformations, which
provide the cell with usable energy and the molecules needed to form its
structure and coordinate its activities. These biochemical reactions, as
well as all other cellular processes, are governed by basic principles of
chemistry and physics. A significant factor that determines whether or
not reactions could take place is the entropy and it measures the random-
ness of the system. This measure depends on various factors like degrees
of freedom (movement, vibration) for molecules, order in the solution,
number of molecules, and so on. In an abstract framework, all these fac-
tors that describe the way molecules interact can be expressed by means
of a computable multi-function that, depending on the current state of
the system, it establishes the possible ways the system could evolve. In-
spired by these facts, we introduce and study several bio-mimetic com-
putational rewriting systems that use discrete components (i.e., finite
alphabets, finite set(s) of rewriting rules, etc.) and which perform their
computational steps in a non-deterministic manner and in a degree of
rewriting parallelism that depends on the state of the system (both the
non-determinism and the degree of the parallelism being specified by a
given computable multi-function). Moreover, we are interested by sys-
tems that produce the same output, independently of the values taken
by the considered functions.

Modeling the Dynamical Parallelism of Bio-Systems 291

1 Introduction

In nature, we often find biological systems (but not only) that are not neces-
sarily homogeneous, consisting of many discrete, interacting entities that have a
certain physical spatial distribution. This fact suggests that even if these entities
interact in a parallel manner, they obey to some local conditions (concentration,
for instance) and therefore the interaction parallelism cannot be considered as
maximal or fixed, but as a variable that depends on the state of the system.

For example, at the cell level, bimolecular mechanisms are the result of many
different chemical reactions that take place with a certain degree of mutual in-
dependence but such that they finally (and amazingly) exhibit an overall co-
ordination. Traditionally these behaviors were modeled using the theory of par-
tial derivative equations and nonlinear dynamical systems. However, this ap-
proach usually gave the general evolution and the dynamics of the system but
not always giving the exact solution. From the discrete point of view, the interest
was mainly in inferring the properties of the languages generated by such bio-
inspired models. Although discrete models of complex phenomena may generate
errors, the magnitude of the errors can be arbitrarily reduced by considering a
better granularity of the phenomenon. This approach leads in general to a high
computational effort, so a more efficient way of studying properties of bio-systems
might be to consider discrete formal systems that have embedded in their formal
description a certain degree of randomness, describing the way systems evolve.

One such property regards the measure of parallelism. From this point of
view for instance, using biochemical reasoning one might predict that, given a
particular state of a bio-system and the rules that make it evolves, an approx-
imate next state is reached after a certain time. Basically, even if one does not
know the exact number of times the rules are applied, one knows that after a
particular time the reactions that had the potential to be applied, were actually
accomplished in an approximate rate with respect to the state of the system.

Moreover, from the computer science point of view, in case we are trying to
make use of bio-systems as computational devices we should be able to control
their behavior no matter the rate of parallelism occurring within them. There-
fore, we are interested in systems that one might call “parallel fault tolerant”
meaning that they produce the same output no matter which is the “evolution”
of the parallelism. This assumption might also have a biological counterpart,
namely natural sub-systems are able to regulate themselves and replace, in case
is needed, the functions of other sub-systems such that the overall system can
perform the same task. From this point of view one can assume that a complex
bio-system (like a cell or whatever organism) has the ability to reach a “desired”
state, no matter how “local” decisions were made.

Here we will consider two bio-mimetic models, namely Lindenmayer systems,
inspired by the development of multi-cellular organisms and P systems with
promoters, motivated by enzyme activation/inactivation happening in the living
cells.

292 E. Csuhaj-Varjú, R. Freund, and D. Sburlan

We will extend the original definitions of these systems by considering com-
putable multi-valued functions that control the derivation (in terms of specifying
the rewriting parallelism and of nondeterminism).

2 Preliminaries

We assume the reader to be familiar with basic notions of formal languages,
Lindenmayer systems, and P systems (for more details one can consult [4], [5],
and [6]).

We start by briefly recalling some notions from multiset processing theory.
Later on, we will introduce several new definitions needed for the purpose of this
work.

A multiset over an arbitrary set X is a mapping M : X −→ IN . We de-
note by M(x), x ∈ X , the multiplicity of x in the multiset M . If the set
X = {x1, . . . , xn} is finite, then the multiset M can be explicitly given in
the form {(x1, M(x1)), . . . , (xn, M(xn))}. The support of a multiset M is the
set supp(M) = {x ∈ X | M(x) ≥ 1}. A multiset M is empty when its sup-
port is empty. Let M1, M2 : X −→ IN be two multisets. We say that M1 is
included in M2 (and we denote this by M1 ⊆ M2) if M1(x) ≤ M2(x), for
all x ∈ X . The inclusion is strict if M1 ⊆ M2 and M1 6= M2. The union
(difference) of two multisets, M1 ∪ M2 : X −→ IN (respectively, M1 \ M2 :
X −→ IN), is defined as (M1 ∪ M2)(x) = M1(x) + M2(x) (respectively, for
M2 ⊆ M1, (M1 \ M2)(x) = M1(x) − M2(x)), for all x ∈ X . A multiset M of
finite support, {(x1, M(x1)), . . . , (xn, M(xn))} can also be represented by the

string: w = x
M(x1)
1 x

M(x2)
2 . . . x

M(xn)
n and all the permutations of this string pre-

cisely identify the objects in the support of M and their multiplicities. More-
over, the Parikh image of w, ΨX(w) is exactly the vector (M(x1), . . . , M(xn))

of multiplicities. The cardinality of a multiset w = x
M(x1)
1 x

M(x2)
2 . . . x

M(xn)
n is

card(w) = M(x1) + M(x2) + . . . + M(xn); the number of occurrences of xi in w
is denoted by |w|xi

= M(xi), for 1 ≤ i ≤ n.
Let l ∈ IN and w = xt1

1 . . . xtn
n , xi ∈ X , ti ∈ IN , 1 ≤ i ≤ n, a multiset over

X . Then we can define the product l ∗w = xl·t1
1 xl·t2

2 . . . xl·tn
n .

Consider a finite set of symbols V = {a1, a2, . . . , an}. An arbitrary multiset
rewriting rule is a pair (u, v) with u ∈ V +, v ∈ V ∗ multisets over the set V ; such
a rule is typically written as u → v. For a multiset rewriting rule r : u → v, with
u, v ∈ V ∗ multisets over V , let left(r) = u and right(r) = v.

In what follows we want to formally define the conditions required for a
given multiset rewriting rule (or more multiset rewriting rules) to be applied
(simultaneously applied, respectively) on a given multiset of symbols.

Let w ∈ V ∗ be a multiset over V and let R = {r1, r2, . . . , rk} be a set of
multiset rewriting rules such that ri = ui → vi, with ui, vi ∈ V ∗, 1 ≤ i ≤ k.
Denote by Rap

w ⊆ R the set of applicable multiset rewriting rules to w, that is,
Rap

w = {r ∈ R | left(r) ⊆ w}.
Denote by Rsap

w = rt1
1 rt2

2 . . . rtk

k , ti ∈ IN , 1 ≤ i ≤ k, a multiset over R of
simultaneously applicable multiset rewriting rules to w. Rsap

w is any multiset

Modeling the Dynamical Parallelism of Bio-Systems 293

such that: ⋃

1≤i≤k

ti ∗ left(ri) ⊆ w. (1)

Denote by RSAP
w the set of all multisets of simultaneously applicable rules to

w, i.e., RSAP
w = {Rsap

w satisfying (1) | Rsap
w ∈ R∗}.

Next, we want to define which is the “impact” of a multiset of rules when
they are applied on a given multiset of symbols (i.e., how many distinct symbols
are rewritten). Based on this, we further define the set containing the multisets
of rules that produce the biggest “impact” on a given multiset of symbols.

For x = ri1
1 ri2

2 . . . rik

k ∈ RSAP
w let

Dx = supp(

k⋃

i=1

left(ri)).

The set Dx indicates all distinct symbols from w that are rewritten by an ap-
plication of x.

Denote by

RMSAP
w = {x = ri1

1 ri2
2 . . . rik

k ∈ RSAP
w | card(Dx) = max

y∈RSAP
w

(card(Dy))}

the set of multisets of simultaneously applicable rules to w, called the maximal
component of RSAP

w .

Remark 1. The maximal component of RSAP
w contains all multisets of simulta-

neously applicable rules such that the rewriting of distinct symbols is maximal
(in the sense of the processed objects).

Let Y be a set of multisets over R; we denote

Pr(Y) = {r1r2 . . . rk | rt1
1 rt2

2 . . . rtk

k ∈ Y }.

We will use the set of sets Ww = {X ⊆ RMSAP
w | Pr(X) = Pr(RMSAP

w)}.
Let

RMAX
w = {x ∈ RSAP

w | there exists y ∈ RSAP
w such that x ⊆ y implies x = y}

be the set of multisets of all maximal simultaneously applicable rules to w.

Remark 2. The concept of maximal parallelism of rewriting (used, for instance,
in the P systems framework) is expressed using the set RMAX

w ⊆ RSAP
w ; for

example, considering a P system Π in a given configuration and a region of Π
containing a set of rules R that acts on the multiset w, an element in RMAX

w

gives a possible ensemble of rules that can be applied on w in a maximal parallel
manner.

In addition, one can remark that RMSAP
w ⊇ RMAX

w . Observe that for non-
cooperative multiset rewriting rules Pr(RMAX

w) = Pr(RMSAP
w).

294 E. Csuhaj-Varjú, R. Freund, and D. Sburlan

The notions presented above regarding multisets and rules can be extended
to strings and productions in a straightforward manner as follows∗. However, as
opposed to the multiset case, here we have to pay more attention to the implicit
order between the symbols in a string.

Considering a set of productions R = {r1, r2, . . . , rk} over an alphabet V ,
then the set of applicable productions to a string w is RSap

w = {r ∈ R | w =
α1left(r)α2, α1, α2 ∈ V ∗}. Let U = {a | a ∈ V } and let o : V ∗ → U∗ be a mor-
phism that maps symbols from V into their corresponding overlined symbols.
Let hri

: (V ∪ U)∗ → (V ∪ U)∗ such that hri
(α1left(ri)α2) = α1o(left(ri))α2,

α1, α2 ∈ (V ∪U)∗. Then we can define a multiset of simultaneously applicable pro-
ductions to a string w as follows (recall that we are not interested which are the
sites in w where the productions from R are applied, but if they can be simultane-
ously applied). RSsap

w = rt1
1 . . . rtk

k such that there exists ht1
r1

(ht2
r2

(. . . htk
rk

(w) . . .)),
i.e., there exists “enough” sites in w where the productions could be applied.
The set of all multisets of simultaneously applicable productions to the string w
is denoted by RSSAP

w .
The set of all distinct symbols from the string w rewritten by an application

of the multiset of productions x = ri1
1 ri2

2 . . . rik

k ∈ RSSAP
w is

DSx = {a ∈ V | (∃) ri, 1 ≤ i ≤ k, such that left(ri) = α1aα2, α1, α2 ∈ V ∗}.

The maximal component of RSSAP
w is defined as for multisets, i.e.,

RSMSAP
w = {x = ri1

1 ri2
2 . . . rik

k ∈ RSSAP
w | card(DSx) = max

y∈RSSAP
w

(card(DSy))}.

Let Y be a set of multisets over R; we denote

Pr(Y) = {r1r2 . . . rk | rt1
1 rt2

2 . . . rtk

k ∈ Y }.

We will use the set of sets WSw = {X ⊆ RSMSAP
w | Pr(X) = Pr(RSMSAP

w)}.

Example 1. Let V = {a, b, c}. Consider the multiset w = aaabbbbccc and the set
of multiset rewriting rules R = {r1 : abc → α, r2 : bcc → β, r3 : aac → γ, r4 :
acccc → θ}. Then we have:

– RSAP
w = {λ, r1, r

2
1 , r

3
1 , r2, r3, r1r2, r1r3, r2r3};

– RMAX
w = {r3, r1r2, r1r3, r2r3};

– Dr1r3 = Dr1 = {a, b, c}; Dr3 = Dr4 = {a, c};
– RMSAP

w = {r1, r
2
1, r

3
1 , r1r2, r1r3, r2r3}.

Example 2. Let V = {a, b, c, d}. Consider the string w = aabc and the set of
rewriting productions R = {r1 : a → α1, r2 : a → α2, r3 : b → β, r4 : c → γ, r5 :
d → θ}. Then we have:

RSSAP
w = {λ, r1, r2, r

2
1 , r

2
2 , r3, r4, r1r2, r1r3, r2r3, r1r4, r2r4, r3r4}

* We will use similar notations as for the multiset case, the difference being a capital
letter S on the right hand side of each defined operator.

Modeling the Dynamical Parallelism of Bio-Systems 295

∪ {r2
1r3, r

2
2r3, r

2
1r4, r

2
2r4, r1r2r3, r1r3r4, r2r3r4}

∪ {r2
1r3r4, r

2
2r3r4, r1r2r3r4};

RSMAX
w = {r2

1r3r4, r
2
2r3r4, r1r2r3r4};

RSMSAP
w = {r1r3r4, r2r3r4, r

2
1r3r4, r

2
2r3r4, r1r2r3r4}.

WSw = {{r1r3r4, r
2
2r3r4, r1r2r3r4}, {r1r3r4, r2r3r4, r1r2r3r4},

{r2
1r3r4, r

2
2r3r4, r1r2r3r4}, . . .}.

3 On the Dynamical Parallelism of L Systems

In this section we extend the classical definition of Lindenmayer system in order
to fit a more general perspective. Such systems model biological developments
in which parts of organism change simultaneously but not in the total parallel
manner as in the classical Lindenmayer theory, but with respect to the current
state of the organism. Several results regarding the computational power of these
systems are also presented.

Generally speaking, computing formal systems make usually use of rewrit-
ing rules to perform their computations. The semantics of such formal models
provide the ways the rewriting rules are applied. Here, in order to capture the
most general case, we will consider computable multi-valued functions that, de-
pending on the current state of the system, control the applications of the rules.
Intuitively, this assertion can be better understood if we express this mathemat-
ical formalism by means of a biological motivation. More specifically, for a given
state of a bio-system (represented by a multiset/string w), one can predict that
a certain rule, say a → α, is to be applied on w in a rate specified by a value in
the interval (x, y) ⊆ (0, 1). Therefore, in that computational step, the rule a → α
is applied a number of times i, such that

[
x · |w|a

]
≤ i ≤

[
y · |w|a

]
. However,

when generalizing this concept, we might assume that there are more than one
interval that control the applications of rules (generalizing even more, we have
a set with no relation between its elements), and this brings us to the following
formalism.

Definition 1. An M -rate 0L system, denoted by M0L, is a quadruple H =
(V, R, ω, f), where:
• V = {a1, . . . , am} is a finite alphabet,
• R is a finite set of productions of the form l : a → α, with a ∈ V , α ∈ V ∗, and
l is a label that precisely identifies∗ the production a → α. The set of productions
R has to be complete, i.e., for each symbol a ∈ V there must exist at least one
production l : a → α ∈ R with this letter a on its left side.
• f is a multi-valued computable function such that f : V ∗ → P(R∗),
f(x) ∈ P(RSSAP

x),
• ω ∈ V ∗ is the axiom.

* We will drop off these labels in case their presence is unnecessary.

296 E. Csuhaj-Varjú, R. Freund, and D. Sburlan

M0L systems use M -rate parallel derivations, i.e., x directly derives y in
a M0L system H = (V, R, ω, f), with x, y ∈ V ∗, written as x =⇒

f
y, if x =

x1x2 . . . xn, y = y1y2 . . . yn, xi ∈ V , yi ∈ V ∗, 1 ≤ i ≤ n, and the following
conditions hold:

– for every j, 1 ≤ j ≤ n, either yj = xj (the j-th symbol remains unchanged),
or r : xj → yj ∈ P (some production of R is applied to the j-th symbol);

– the productions are applied according with RSsap
x = rt1

1 rt2
2 . . . rtk

k ∈ f(x)
(i.e., the production ri is applied ti times, for 1 ≤ i ≤ k).

This manner of derivation is called the ‘‘weak mode”. In the “strong mode”
of derivation, we consider f : V ∗ → P(R∗), f(x) ∈ {X ⊆ RSMSAP

x | Pr(X) =
Pr(RSMSAP

x)}.

The transitive and reflexive closure of
MOL
=⇒ H is denoted by

MOL

=⇒∗
H . The gen-

erated language of the M0L system H is

L(H) = {u ∈ V ∗ | ω
MOL

=⇒∗
H u}.

Remark 3. For both derivation modes, the local degree of parallelism for a given
derivation step is defined by

max
y∈f(x)

(card(supp(y))).

For the weak mode of derivation, a degree of parallelism k, 1 ≤ k ≤ 2, means
that at most two distinct productions are applied simultaneously. The number
of times each production is applied is given by the computable multi-valued
function f .

Definition 2. An M -rate T0L system, denoted by MTOL, is a triplet H =
(V, T, ω), where:
• V is a finite alphabet,
• T = {(T1, f1), . . . , (Tk, fk)} is a finite set of pairs, where each Ti, 1 ≤ i ≤ k,
is a complete set of context-free productions over V , and each fi, 1 ≤ i ≤ k,
is a computable multi-valued function such that fi : V ∗ → P(T ∗

i), fi(x) ∈
P(TiS

SAP
x). This way of defining fi, 1 ≤ i ≤ k stands for the weak mode of

derivation. For the strong mode of derivation, multi-valued functions are defined
as fi : V ∗ → P(T ∗

i), fi(x) ∈ {X ⊆ TiS
MSAP
x | Pr(X) = Pr(TiS

MSAP
x)},

1 ≤ i ≤ k,
• ω ∈ V ∗ is the axiom.

We say that x directly derives y in a MT0L system H = (V, T, ω), with

x, y ∈ V ∗, written as x
MTOL
=⇒ H y, if x

MOL
=⇒ Hi

y for some i, 1 ≤ i ≤ k, with the
M0L system Hi = (V, Ti, ω, fi).

The transitive and reflexive closure of
MTOL
=⇒ H is denoted by

MTOL

=⇒∗
H . The

generated language of the MT0L system H is

L(H) = {u ∈ V ∗ | ω
MTOL

=⇒∗
H u}.

Modeling the Dynamical Parallelism of Bio-Systems 297

Definition 3. An M -rate ET0L system, denoted by MET0L, is a quadruple
H = (V, T, ω, ∆), where H = (V, T, ω) is an MT0L system, and ∆ ⊆ V , ∆ 6= ∅,
is the terminal alphabet. In an MET0L system H = (V, T, ω, ∆), x directly

derives y, with x, y ∈ V ∗, written as x
METOL

=⇒ H y, if x
MTOL
=⇒ H y.

The transitive and reflexive closure of
METOL

=⇒ H is denoted by
METOL

=⇒∗
H . The

generated language of the MET0L system H is L(H) = {w ∈ ∆∗ | ω
METOL

=⇒∗
H

w}.

Definition 4. An M0L (or MT0L, MET0L) system generating the same lan-
guage independently of the functions associated with the set(s) of productions is
called parallel-free M0L (or MT0L, MET0L, respectively) system.

The families of languages generated by M0L (or MT0L, MET0L) systems
working in the strong mode are denoted by M0Ls (or MT0Ls, MET0Ls, re-
spectively).

The families of languages generated by M0L (or MT0L, MET0L, respec-
tively) systems working in the weak mode are denoted by M0Lw (or MT0Lw,
MET0Lw, respectively).

When we speak about above mentioned families of languages, we will denote
the parallel-free property by adding the superscript pf .

We denote by U = {L | card(L) = 1} the family of all singleton languages.

The following result characterize the computational power of extended, in-
teractionless Lindenmayer systems when working in the weak mode and being
parallel-free.

Theorem 1. ME0Lw,pf = MET0Lw,pf = U ∪ {∅}.

Proof. The assertion is trivial, because a system working in parallel-free mode
means that whatever set/sets of multi-valued functions one can choose, the sys-
tem produces the same output; in addition, because the system works in a weak
mode then it means that certain productions might not be applied at all even if
there are symbols (but not enough) that are within the scope of them. So, one
can choose the multi-valued functions in such a manner that the productions
cannot be applied at all. Therefore, such systems generate languages containing
at most the systems axioms. �

Using a similar argument one can prove that:

Theorem 2. MT0Lw,pf = M0Lw,pf = U.

Example 3. Let H = (V, P, ω, F) be an M0L system working in the strong mode
such that:

V = {a, b, c},
P = {r1 : a → aa, r2 : b → bb, r3 : c → cc},
ω = abc,

f(w) = {r1r2r3}, for w ∈ V ∗.

298 E. Csuhaj-Varjú, R. Freund, and D. Sburlan

Obviously, H generates the language L(H) = {anbncn | n ≥ 1}.

Here we will prove that extended, interactionless Lindenmayer systems can
generate any language over a given alphabet V .

Theorem 3. ME0Lw = MET0Lw = P(V ∗).

Proof. Let us prove that using such systems we can generate any language L
(computable or not). For the sake of simplicity but without loosing the generality
we will generate languages over one letter alphabet. For a given L ⊆ {a}+, we
construct the system H = (V, P, ω, ∆, F) where V = {a, A}, ω = A, ∆ = {a},
the set P contains the following productions:

r1 : A → aA,

r2 : A → λ,

r3 : a → a,

and f is defined as follows.
For a given string w = anA, n ≥ 0, we have:

• f(w) ⊆ {r1r
i
3 | 0 ≤ i ≤ n} iff an /∈ L,

• f(w) ⊆ PSSAP
w and there exists z ∈ {r2r

i
3 | 0 ≤ i ≤ n} such that

z ∈ f(w) iff an ∈ L.

Observe that any time an /∈ L, the number of symbols a grows (the production
r1 : A → aA is executed since there exists z ∈ {r1r

i
3 | 0 ≤ i ≤ n}, such that

z ∈ f(anA)).
In case an ∈ L, then f indicates that the production r2 : A → λ might be

executed (because of the way the function f was defined, also the production
r1 : A → aA might be executed). Therefore, non-deterministically, the system
H generates a string w ∈ L.

In this way, the constructed system can generate any subset of V ∗. Hence,
we have that ME0Lw = MET0Lw = P(V ∗). �

Example 4. The language L = {a, a3} is not MOLs,pf (or MT0Ls,pf) language.
This is proved by contradiction as follows. If there exists a MOLs,pf system
H = (V, P, ω) such that L(H) = {a, a3} then, since obviously V = {a}, we
have two cases: (i) ω = a and a ⇒ a3, hence a3 ⇒ ak, k 6= 1, 3, therefore a
contradiction; (ii) w = a3, hence a ⇒ a and a ⇒ λ. Thus a3 ⇒ a2 and so
a2 ∈ L(G), therefore a contradiction.

Obviously, the following results stand:

Proposition 1. MT0Ls,pf ⊂ RE.

Proposition 2. M0Ls,pf ⊂ RE.

Now, we will prove that there exists a class of ET0L systems that are inde-
pendent of the multi-valued functions associated with the sets of rules and which
are able to generate the whole class of ET0L languages. Before we start recall
that for each L ∈ ET0L there exists an ET0L system H with two tables such
that L = L(H).

Modeling the Dynamical Parallelism of Bio-Systems 299

Theorem 4. MET0Ls,pf = ET0L.

Proof. We prove this result by double inclusion.

(1) MET0Ls,pf ⊇ ET0L.

Consider an ET0L system H̃ = (Ṽ , T̃ , ω̃, ∆̃) such that T̃ = {T̃1, T̃2}.

Let h1 : Ṽ ∗ → V
∗

be a morphism such that h1(a) = a, a ∈ Ṽ . Also, let

h2 : Ṽ ∗ → V
∗

be a morphism such that h2(a) = a, a ∈ Ṽ .

We will simulate the computation of the system H̃ with an MET0L system
H = (V, T, ω, ∆) defined as follows.

• V = Ṽ ∪ {h1(A), h2(A) | A ∈ Ṽ } ∪ {t1, t2, t3, t4} ∪ {#};
• T = {(T1, f1), (T2, f2), (T3, f3), (T4, f4)}, where

T1 = {A → h1(α)t1 , for all A → α ∈ T̃1}

∪ {h1(A) → h1(A) , for all A ∈ Ṽ }

∪ {h2(A) → # , for all A ∈ Ṽ }

∪ {# → # , t1 → λ , t2 → # , t3 → # , t4 → #},

T2 = {A → A , for all A ∈ Ṽ }

∪ {h1(A) → At2 , for all A ∈ Ṽ }

∪ {h2(A) → # , for all A ∈ Ṽ }

∪ {# → # , t1 → # , t2 → λ , t3 → # , t4 → #},

T3 = {A → h2(α)t3 , for all A → α ∈ T̃2}

∪ {h1(A) → # , for all A ∈ Ṽ }

∪ {h2(A) → h2(A) , for all A ∈ Ṽ }

∪ {# → # , t1 → # , t2 → # , t3 → λ , t4 → #},

T4 = {A → A , for all A ∈ Ṽ }

∪ {h2(A) → At4 , for all A ∈ Ṽ }

∪ {h1(A) → # , for all A ∈ Ṽ }

∪ {# → # , t1 → # , t2 → # , t3 → # , t4 → λ};

and fi : V ∗ → P(R∗), fi(x) ∈ {X ⊆ RSMSAP
x | Pr(X) = Pr(RSMSAP

x)},
1 ≤ i ≤ 4, arbitrarily.
• ω = ω̃;
• ∆ = ∆̃.

Here is how the construction is done. We want to simulate the applications
of H̃ tables; to this aim let us assume, without loosing the generality, that T̃1

is simulated first. So, in H , at the beginning, one table is chosen nondetermin-
istically and is applied on the initial sentential form ω; in case table T2 or T4 is
chosen, then the current sentential form is left unchanged (only the productions
of type A → A, A ∈ V are applied). If table T1 (or T3) is chosen then productions
of type A → h1(α)t1 will be executed. However, because the parallelism is not

300 E. Csuhaj-Varjú, R. Freund, and D. Sburlan

necessarily maximal but depends on the function f1 (or f3, respectively), then
not necessarily all symbols A from the current sentential form will be rewritten.
However, since in table T1 there exists only one production having the symbol
A on the left-hand side (i.e., A → h1(α)t1) and the system is working in the
strong mode, then the symbol A will be rewritten at least once (remember that
fi(x) ∈ {X ⊆ RSMSAP

x | Pr(X) = Pr(RSMSAP
x)}). Consequently, a symbol

t1 is produced. Assume now that there are still symbols A not rewritten by T1

despite the existence of a production handling symbol A. If this is the case, ob-
serve that if any other table (except T1) is chosen for a next application, then
the symbol # is generated (henceforth the system will not be able anymore to
generate a string over ∆ because the production # → # is present in every
table of H and will be always executed). Therefore, the only table that can be
applied and that does not produce the symbol # is again T1. Finally, all symbols
A ∈ V will be rewritten by applications of table T1. In addition, table T1 is also
responsible for deleting all symbols t1. After completing these tasks, the current
string will have only images by morphism h1 of symbols from V (let us call
them “overlined” symbols). At that moment, if we choose to apply any other
table except T2 the symbol # is again produced. In case table T2 is applied, then
with a similar mechanism as presented before, the system checks whether or not
all “overlined” symbols are rewritten into “regular” ones. Again, during this
checking procedure if we choose to apply another table other than T2, symbol
is produced. The simulation of the application of table T̃2 follows a similar
pattern. In this way, the computation take place step by step, simulating the

computation of (̃H) if the “right” tables are chosen for application, and always
producing the trap symbol if a “wrong” table is chosen for application.

Observe that the strong working mode feature is essential because if at a
certain moment a wrong table is chosen for application, then we have to be sure
that at least one symbol # is produced, hence a production has to be applied at
least once if it can be applied.

Concluding, we have that the constructed system H generates the same lan-
guage as the arbitrarily considered ET0L system H̃ . Consequently, we have that
MET0Ls,pf ⊇ ET0L.

(2) ET0L ⊇ MET0Ls,pf .
In order to prove this inclusion, we will simulate the computation of an arbitrary
MET0Ls,pf system H = (V , T , ω, ∆) with an ETOL system H = (V, T, ω, ∆)
we construct. First, remark that because the system H is parallel-free, then, no
matter how the multi-valued functions associated with the sets of productions are
chosen, the result of the computation is the same. In particular, one can associate
with all the sets of productions of the system the multi-valued functions such
that, during the computation, the productions are applied in a total parallel
manner (as for the L systems).

Therefore, H is defined as follows:

• V = V ;
• T = {T1, T2, . . . , Tk} providing that T = {T1, T2, . . . , Tk};
• ω = ω;

Modeling the Dynamical Parallelism of Bio-Systems 301

• Ti = {A → α | A → α ∈ Ti, 1 ≤ i ≤ k};
• ∆ = ∆.

Observe that in an ET0L system, when a certain table is applied, if a pro-
duction can be applied then it will be applied (of course, respecting the non-
determinism if exists). This corresponds to the strong mode of derivation for
MET0L systems.

Consequently, we have that ET0L ⊇ MET0Ls,pf and therefore we can con-
clude that MET0Ls,pf = ET0L. �

4 P Systems with Promoters/Inhibitors

A P system with promoters/inhibitors is formally defined as follows.

Definition 5. A P system with promoters/inhibitors of degree m ≥ 1, with
symbol–objects is a construct

Π = (V, Σ, C, P, I, µ, w1, . . . , wm, R1, . . . , Rm, i0),

where:

– V is the alphabet of Π; its elements are called objects;
– Σ is the output alphabet, Σ ⊆ V ;
– C ⊆ V is the set of catalysts;
– P is the set of promoters, P ⊆ V ;
– I is the set of inhibitors, I ⊆ V ;
– µ is a membrane structure consisting of m membranes labeled 1, 2, . . . , m;
– wi, 1 ≤ i ≤ m, are strings that represent the multisets over V associated

with the regions 1, 2, . . . , m of µ;
– Ri, 1 ≤ i ≤ m, are finite sets of evolution rules associated with the regions i

of µ; an evolution rule can be non-cooperative, a → v, promoted (inhibited)
non-cooperative a → v|p (or a → v|¬i, respectively), catalytic ca → cv,
or promoted (inhibited) catalytic ca → cv|p (or ca → cv|¬i, respectively),
where a ∈ (V \ C), c ∈ C, p ∈ P , i ∈ I, and v is a string over Vtar, with
Vtar = (V \ C) × TAR, for TAR = {here, out} ∪ {inj | 1 ≤ j ≤ m}; the
target is indicated as index of an object and if no target is specified that is
intended to be here; also, the subscript j is omitted in inj if there is only
one choice to go for an object having this target indication.

– i0 ∈ {1, . . . , m} specifies the output region of Π.

The membrane structure is a hierarchical arrangement of membranes, embed-
ded in a skin membrane, the one which separates the system from the environ-
ment. Each membrane defines a region, i.e., the space in-between the membrane
and the membranes directly included in it (if any). Membranes are labeled in
order to identify the regions they delimit.

The configuration of Π is an instantaneous description of it, including its
membrane structure and the contents of all the membranes. The initial configu-
ration is composed by the membrane structure µ and the objects initially present
in the regions of the system, as described by w1, . . . , wm.

302 E. Csuhaj-Varjú, R. Freund, and D. Sburlan

The result of applying a rule u → v (or u → v|p or u → v|¬i), where u, v ∈ V ∗

is determined by v: if the object a appears in v in the form ahere then it will
remain in the same region, else if it is in the form aout (or ain) then it will exit
to the upper region (or to one inner region, respectively).

A promoted rule u → v|p can be applied only in the presence of promoter
p. An inhibited rule u → v|¬i can be applied only in the absence of inhibitor i.
Promoters and inhibitors can evolve according to some rules.

For two configurations C1 = (w′
1, w

′
2, . . . , w

′
m) and C2 = (w′′

1 , w′′
2 , . . . , w′′

m)
of Π , we define a transition from C1 to C2 if we can pass from C1 to C2 by
applying the rules from R1, . . . , Rm, in the corresponding regions 1, . . . , m, in a
maximally parallel manner and with competition on the objects∗ .

A computation of Π is a sequence of transitions between configurations,
starting from the initial one. Π makes a successful computation iff it halts, i.e.,
there is no rule applicable to the objects present in the halting configuration.

The result of a successful computation is the number (or the vector of num-
bers) of objects from Σ present in the output region i0 in the halting configura-
tion. Collecting all the numbers (or vectors of numbers), for any possible halting
configuration, we get the set N(Π) (or Ps(Π), respectively) – the set of numbers
(vectors of numbers) generated by Π .

The family of sets of numbers (or vectors of numbers) generated by P systems
with promoted (β = pro)/inhibited (β = inh) non-cooperative (α = ncoo)
and catalytic (α = catk) object rewriting rules, using at most k catalysts, and
having at most m membranes, is denoted by NOPm(α, β) (or PsOPm(α, β),
respectively).

There are known the following results regarding the computational power of
P systems with promoters/inhibitors.
• PsOP2(cat1, pro) = PsOP2(cat1, inh) = PsRE (see [1],[3]).
• PsOP1(ncoo, inh) = PsET0L (see [8]).

However, given the definition of the model, in what follows we will prove
that the model of P systems with non-cooperative promoted rules equals in
computational power the model of P systems with non-cooperative inhibited
rules.

Our first step is to show that the family of sets of vectors generated by
P systems with promoted non-cooperative rules and an arbitrary membranes
structure equals the family of sets of vectors generated by P systems with the
same features but with only one membrane.

Lemma 1. PsOPm(ncoo, pro) = PsOP1(ncoo, pro), for m ≥ 2.

Proof. The inclusion PsOPm(ncoo, pro) ⊇ PsOP1(ncoo, pro) is trivial. For the
proof of the inclusion PsOPm(ncoo, pro) ⊆ PsOP1(ncoo, pro), we construct a P
system Π1 = (V, Σ, C, P, I, µ, w, R, i0) that simulates the computation of the P
system Πm = (V , Σ, C, P , I, µ, w1, . . . , wm, R1, . . . , Rm, i0) in the following way.

* In Section 5 we consider another mode of applying the rules by employing some
computable multi-valued functions that will govern the applications of the rules.

Modeling the Dynamical Parallelism of Bio-Systems 303

First, denote by L = {1, 2, . . . , m} the set of labels of the regions of Πm.
Then, we define:

• V = {ai | a ∈ V , i ∈ L};
• Σ = {ai | a ∈ Σ, i = i0 ∈ L};
• C = C = I = I = ∅;
• P ⊆ V ;
• µ = []1;

Let h : V
∗
×L → V ∗ be a mapping such that

1) h(a, i) = ai, a ∈ V , i ∈ L;

2) h(λ, i) = λ, for all i ∈ L;

3) h(x1x2, i) = h(x1, i)h(x2, i), x1, x2 ∈ V
∗
, i ∈ L.

• denote by w = h(w1)h(w2) . . . h(wm), where wi is the multiset present in region
i ∈ L of Πm at the beginning of the computation;

• R is defined as follows. For each rule a → α|b ∈ Ri, a, b ∈ V , α is a string over
{c, cout, cin | c ∈ V }, i ∈ L, we add to R the rule h(a, i) → α′|h(b,i) where α′ is

the corresponding string over {h(c, i), h(c, j), h(c, k) | c ∈ V , i, j, k ∈ L}, j being
the label of the outer region of i, and k being the label of the inner region of i;
• i0 = 1.

In other words, for the P system with a single region that simulates a P
system with m regions, we have encoded the region labels into objects (the
subscript associated to an object indicates the region where the corresponding
object belongs) and we have expressed the rules of regions by the corresponding
encoded objects. In this way we ensured that, when simulating Πm with Π1,
both the parallelism at the level of regions and at the level of whole system Πm

is respected. In addition, one can remark that whenever Πm halts, Π1 halts as
well. Moreover, when Π1 halts, we will have in the output region of Π1 all the
objects corresponding to the multisets present in all regions of Πm. However, in
the output multiset wΠ1 of Π1 we can distinguish the output multiset wΠm

of

Πm because we know which are the objects corresponding to the output region
of Πm (they are the objects that have as index i0).

Therefore, we have that PsOPm(ncoo, pro) ⊆ PsOP1(ncoo, pro). Conse-
quently, the theorem holds. �

Now, one can prove that the class of sets of vectors of numbers generated
by P systems with non-cooperative promoted rules includes at least the class of
Parikh images of languages generated by ET0L systems.

Lemma 2. PsOP1(ncoo, pro) ⊇ PsET0L.

Proof. We will simulate the computation performed by an arbitrary ET0L sys-
tem H = (V, T, ω, ∆) with T = {T1, T2}, using a P system Π1 defined as follows.

Π1 = (Vπ , Σ, C, P, I, µ, w, R, i0), where:

304 E. Csuhaj-Varjú, R. Freund, and D. Sburlan

• Vπ = V ∪ {t, t1, t2, K, K1};

• Σ = ∆;

• C = I = ∅;

• P ⊆ V ;

• w = ωt;

• µ = []1;

• i0 = 1.

The set of rules Rπ is defined as:

t → t1,

t → t2,

A → αK|t1 , for all rules A → α ∈ T1,

A → αK|t2 , for all rules A → α ∈ T2,

K → K1,

t1 → t|A , for all A ∈ V \ ∆,

t2 → t|A , for all A ∈ V \ ∆,

t1 → λ|K1 ,

t1 → t|K1 ,

t2 → λ|K1 ,

t2 → t|K1 ,

K1 → λ.

At the beginning of simulation we have inside the region of the P system
the input multiset, consisting of string ω (which corresponds to the axiom of
the ET0L system H), and object t (which represents the starting trigger for the
simulation of the nondeterministic table selection mechanism). Nondeterminis-
tically, object t is transformed into t1 or t2. Once object t1 (or object t2) is
produced, the simulation of the corresponding ET0L table application starts.
All rules A → αK|t1 (or A → αK|t2 , respectively) corresponding to ET0L rules
A → α ∈ T1 (or A → α ∈ T2, respectively) are applied in the maximally parallel
manner. One can notice that if we applied at least once such a rule, we have
produced at least one object K. In this moment we can distinguish two cases:
1) the current configuration is represented by a multiset that contains objects
corresponding to ET0L nonterminals; 2) the current configuration is represented
by a multiset that contains only objects corresponding to ET0L terminals.

In the first case one of the rules t1 → t|A or t2 → t|A will be executed, as well
as the rule K → K1. Since an object t is produced, the simulation of applying a
table in ET0L is iterated (recall that we do not have a terminal string, therefore
we do not have to stop).

In the second case, the rules t1 → t|A or t2 → t|A cannot be executed
because we assumed that the current configuration is represented by a multiset

Modeling the Dynamical Parallelism of Bio-Systems 305

that contains only objects corresponding to ET0L terminals. Therefore, the rule
K → K1 is executed and afterward one of the rules t1 → λ|K1 (or t2 → λ|K1 ,
respectively) and t1 → t|K1 . Depending on which rule is chosen to be applied
we have again two cases – we stop the simulation having in the output region a
terminal string or we continue. In both cases, as a last step of the iteration, rule
K1 → λ is applied.

The above construction proves that PsOP1(ncoo, pro) ⊇ PsET0L. �

For the converse inclusion we have to prove that any P system with non-
cooperative promoted rules can be simulated by a P system with non-cooperative
inhibited rules. Therefore, since PsOP1(ncoo, inh) = PsET0L, the following
result is true.

Lemma 3. PsOP1(ncoo, pro) ⊆ PsET0L.

Proof. Let us consider a P system with non-cooperative promoted rules Π̃ =
(Ṽ , Σ̃, C̃, P̃ , Ĩ, µ̃, w̃, R̃, ĩ0) where Ṽ = {Ai | 1 ≤ i ≤ k}, Σ̃ ⊆ Ṽ , P̃ ⊆ Ṽ ,

C̃ = Ĩ = ∅, and µ̃ = []1.

Without any loss of generality, a non-cooperative rule A → α is equivalent
from computational point of view with the promoted non-cooperative rule A →
α|A. Hence, assume that R̃ = R̃1 ∪ R̃1 ∪ . . . ∪ R̃k, with k = card(Ṽ), where

R̃i = {Ai → α(1,i)|p(1,i)
,

Ai → α(2,i)|p(2,i)
,

.

Ai → α(ti,i)|p(ti,i)
}

The set R̃i, 1 ≤ i ≤ card(Ṽ), contains all the rules from R̃ having the
symbol Ai in their left-hand side. Remark that all the rules are promoted by
certain objects from V ; in particular all non-cooperative rules were written as
the equivalent promoted ones using the above convention.

We construct a P system with non-cooperative inhibited rules Π that simu-
lates the computation of Π̃ as follows.

Π = (V, Σ, C, P, I, µ, w, R, i0), where:

• V = Ṽ ∪ {rj,i | Ai → α(j,i) ∈ R} ∪ V ∪ V ∪ V̇ ∪ V̈ ∪ {X0, X1, X, Y0, Y1, Y };

• Σ = Σ̃;

• C = P = ∅;
• I ⊆ V ;

• µ = []1;

• i0 = 1;

and the set of rules R is defined as follows:

306 E. Csuhaj-Varjú, R. Freund, and D. Sburlan

• for each R̃i ⊆ R̃ defined before we add to R the rules∗:

Step Rule
1 r(j,i) → ṙ(j,i)|¬p(j,i)

, 1 ≤ j ≤ ti

1? Ai → AiX0

2? X0 → X1X

2? Ai → α(j,i)Y0|¬ṙ(j,i)

3? ṙ(j,i) → r̈(j,i)|¬X0

3?, 4? X → λ

3? X1 → X

3? Y0 → Y1Y

3? Ai → Ȧi

3? Ai → Ȧi|¬X0

4? r̈(j,i) → λ|¬Y

4?,5? Y → λ

4? Y1 → Y

4? Ȧi → Äi|¬Y

5? r̈(j,i) → r(j,i)|¬X

5? Ȧi → Ai|¬X

Here is how the simulation is done. First of all recall that the classical defini-
tion of P systems assumes an universal clock that regulates the computation; we
will use this feature to synchronize different branches of computation that run in
parallel. The basic idea of the simulation is the following: we try to simulate the
execution of the rules Ai → α(j,i)|p(j,i)

∈ R by checking in different branches of
computation (that require some renaming of objects) the simultaneous existence
of Ai and of p(j,i). In case they are simultaneously available then we simulate
the rewriting of Ai by α(j,i), otherwise we reestablish the initial configuration
(since we have used the renaming of objects). We stop the simulation when we
detect that no rules can be further applied in the simulated P system.

In more details, let us consider that with each rule Ai → α(j,i)|p(j,i)
∈ R

is associated an object r(j,i) ∈ V . Its purpose will be, by means of the rule
r(j,i) → ṙ(j,i)|¬p(j,i)

, to “check” whether or not the object p(j,i) is in the current
multiset (if p(j,i) exists then we will have in the current multiset the object
ṙ(j,i)). Simultaneously, all existing objects Ai present will be rewritten by the

rule Ai → AiX0. The object X0 is the root of another branch of computation
that is required to “collect” the not rewritten symbols Ai by the rule Ai → α(j,i)

* On the left side of each rule we have specified the step of a given iteration, in
which the corresponding rule might be applied. The question marks indicate that
the corresponding rules might not be applicable in that step.

Modeling the Dynamical Parallelism of Bio-Systems 307

(situation that occurs when the rules of type Ai → α(j,i)|p(j,i)
were not executed

because the objects p(j,i) were missing and there were no non-cooperative rules

of type Ai → α ∈ R). These objects are rewritten by the rule Ai → Ȧi. Later,
objects Ȧi will be rewritten into Ai if there exists at least one rule of Π that was
simulated and the process is repeated, otherwise we stop the the computation
by deleting all objects r̈(j,i) (by the rule r̈(j,i) → λ|¬Y) and transforming the

objects Ȧi into Äi (by the rule Ȧi → Äi|¬Y). It is worth to mention that the
objects Y0 (and their descendants, the objects Y1, Y) are used as witness to the
simulation of rules Ai → α(j,i). If at least one object Y appeared, it means that
the simulation should continue since at least one rule was simulated. �

By Lemma 1, Lemma 2, and Lemma 3 we conclude that:

Theorem 5. PsOPm(ncoo, pro) = PsOPm(ncoo, inh) = PsET0L, for m ≥ 1.

5 On Dynamical Parallelism of P Systems
with Non-cooperative Promoted Rules

In this section we will extend the original definition of P systems with symbol
rewriting rules but we will focus mainly on the definition of P systems using
non-cooperative promoted rules. However, the notions presented can be easily
extended to other models of P systems.

For instance considering an alphabet of objects V , a multiset of objects w ∈
V ∗, and a set of multiset rewriting rules R = {ri : ui → vi|pi

| ui, vi, pi ∈ V ∗, 1 ≤
i ≤ k} we can define Rsap

w = rt1
1 rt2

2 . . . rtk

k , ti ∈ IN , 1 ≤ i ≤ k, a multiset over
R = {ri : ui → vi|pi

| 1 ≤ i ≤ k} of simultaneously applicable multiset rewriting
promoted rules to w. Rsap

w is any multiset such that:

⋃

1≤i≤k

ti ∗ left(ri) ⊆ w and pi ⊆ w if ti > 0.

Based on this we can define as before the notions RSAP
w , RMSAP

w , Dx, RMAX
w ,

Ww. Hence we can consider M-strong rate and M-weak rate modes of derivation
in a similar fashion as we did for M0L systems.

Consider a P system Π = (V, Σ, C, P, I, µ, w1, . . . , wn, R1, . . . , Rn, i0) defined
using the standard notation. Let fi : V ∗ → P(R∗), fi(x) ∈ P(RSAP

x), 1 ≤ i ≤
n, be computable multi-valued functions.

Consider now the system

Π(f1, . . . , fn) = (V, C, Σ, P, I, µ, w1, . . . , wn, R1, . . . , Rn, i0, f1, . . . , fn)

and let us describe how the computations are performed.
Starting from the initial configuration given by the n-tuple (w1, . . . , wn),

where wi, 1 ≤ i ≤ n, are multisets over V , the system evolves according to
the rules and objects present in the membranes, in a non-deterministic parallel
manner. The selection of the rules as well as the number of applications of the

308 E. Csuhaj-Varjú, R. Freund, and D. Sburlan

selected rules on the multiset wi, 1 ≤ i ≤ n, are given by a multi-valued function
fi, 1 ≤ i ≤ n (we have that fi(wi) ∈ P((Ri)

SAP
wi

), in case of weak mode
derivation, or fi(wi) ∈ {X ⊆ RMSAP

wi
| Pr(X) = Pr(RMSAP

wi
)} for the strong

mode derivation). As usually, the system computes according with a universal
clock.

For a given configuration (x1, x2, . . . , xn) with xi, 1 ≤ i ≤ n, multisets over
V , the rules are applied according with (Ri)

sap
xi

= rt1
(i,1)r

t2
(i,2) . . . rtk

(i,k) ∈ fi(xi),

1 ≤ i ≤ n (i.e., given a multiset xi, the rule r(i,j) is applied tj times 1 ≤ j ≤ k).
For two configurations C1 = w′ and C2 = w′′ of Π , we can define the

transition from C1 to C2 if we can pass from C1 to C2 by using the evolution
rules from Ri, 1 ≤ i ≤ n, applied according with the functions fi, 1 ≤ i ≤ n.

As usual, a computation of a P system Π is a sequence of transitions between
configurations. The system will make a successful computation if and only if it
halts. In case of generative P systems, the result of a successful computation is
the number (or the vector of numbers) of objects from Σ present in the membrane
i0, in a halting configuration of Π . If the computation never halts, then we will
have no output.

A P system Π is parallel-free if and only if for any set of functions fi, 1 ≤
i ≤ n, the system Π produces the same set of vectors of natural numbers.

For such P systems, when speaking about the generated families of sets of
(vectors of) natural numbers we will specify the mode of derivation (weak or
strong), as well as the parallel-free property by superscripts associated to the
classical notation given in Section 4. For instance, PsOP s,pf

m (ncoo, pro) repre-
sents the family of sets of numbers generated by P systems using non-cooperative
promoted rules, working in the strong mode and having the parallel-free prop-
erty.

Let us examine the following example:

Example 5. Consider the P system Π = (V, Σ, C, P, I, µ, w, R, ϑ, f), defined as
follows:

V = {a, p};

Σ = {a};

C = ∅;

P = {p};

I = ∅;

µ = []1;

w = a2p;

R = {r1 : a → aaa|p, r2 : p → p, r3 : p → λ};

ϑ = 1;

f(x) = {r
[0.5∗|x|a]+1
1 ri

2r
j
3 | i, j ∈ {0, 1}, i + j = 1}, x ∈ V ∗.

Let us see in more details how this system performs the computation. First,
observe that the execution of rule r1 is controlled by the promoter p, while the

Modeling the Dynamical Parallelism of Bio-Systems 309

number of applications of r1 on the current multiset is given by the function f .
Assume that the rule r1 : a → aaa|p is executed k times in k derivation steps.
Then we have:

|w|a = |w1|a = 2;

|w2|a = 6;

|w3|a = 14;

· ·

|wk|a = ([|wk−1|a ∗ 0.5] + 1) ∗ card(right(r1))

+ |wk−1|a − ([|wk−1| ∗ 0.5] + 1)

= 2 ∗ (1 + [|wk−1| ∗ 0.5]) + |wk−1|a

where by wi we denoted the multiset of objects present in the region of Π , at
the step i of computation.

Observe that if |w1|a
...2 ⇒ |wk|a

...2, then this means that [|wi|a ∗ 0.5] = |wi|a ∗
0.5, 1 ≤ i ≤ k. Then, since |w1|a = 2, we can drop off the integer part function
and we have the following recurrent formulas:

|wk|a = 2 ∗ |wk−1|a + 2 ∗20

|wk−1|a = 2 ∗ |wk−2|a + 2 ∗21

· ·
|w2|a = 2 ∗ |w1|a + 2 ∗2k−2

In order to obtain the general term |wk|a we will multiply each recurrent formula
by a corresponding constant (as shown above) and we will sum the results. It
follows that:

|wk|a = 2k−1∗|w1|a +21+22+ · · ·+2k−1 = 2+ · · ·+2k = 2∗(2k−1)
2−1 = 2k+1−2.

This means that Π generates the set {2k+1 − 2 | k ≥ 2}.

In Section 3 we have shown that MET0Ls,pf = ET0L. Since we have proved
in a constructive manner that PsOPm(ncoo, pro) = PsOPm(ncoo, inh), for m ≥
1, and in [8] it is proved also constructively that PsOPm(ncoo, inh) = PsET0L,
then the following result stands.

P systems with m ≥ 1 membranes, using non-cooperative promoted symbol
objects rewriting rules, working in the strong mode, and having the parallel-free
property, generates the set of all Parikh images of languages generated by ET0L
systems. More formally, we have:

Theorem 6. PsOP s,pf
m (ncoo, pro) = PsET0L, for m ≥ 1.

6 Conclusions

In this paper we have considered a more general perspective of modeling biolog-
ical systems. Here, chemical reactions happening in real organisms are modeled

310 E. Csuhaj-Varjú, R. Freund, and D. Sburlan

by the rewriting of objects but not in a total parallel manner as in Linden-
mayer systems or maximally parallel manner as in the P systems framework.
Multi-valued functions govern the execution of the rules.

We define such type of parallelism with the help of multi-valued functions
that for a given configuration establish the number of times rules are applied.
Regarding this matter, we propose two ways of performing the derivation, the
weak and the strong modes, respectively. The weak mode describes the case when
no restriction is imposed on the way the rewriting is done; the system is parallel
(not necessarily maximal) with competition on objects if it is the case. The
strong mode of derivation assumes that rules are applied in a manner described
by the multi-valued functions, but, in addition one can remark that each distinct
symbol from the sentential form is rewritten at least once (of course, if there are
rules that can handle it).

In this respect, we have relaxed the original P system definition by showing
for the classes of systems we study that they contain proper subclasses able to
generate/accept the same families of sets of vectors/numbers as the correspond-
ing upper classes, regardless the rewriting parallelism in a given configuration.
Systems having such property were called parallel-free P systems.

Several results regarding these topics are obtained. In addition, we studied
“more classical” problems. In Section 4 we have solved an open problem in [4],
regarding the computational power of P systems with non-cooperative promoted
rules.

Acknowledgments.

The work of the third author was possible due to a doctoral FPU grant from
Ministry of Education, Spain.

References

1. P. Bottoni, C. Mart́ın-Vide, Gh. Păun, G. Rozenberg, Membrane Systems with
Promoters/Inhibitors. Acta Informatica, 38, 10 (2002), 695–720.

2. M. Cavaliere, D. Sburlan, Time Independent P Systems, Lecture Notes in Computer

Science, 3365 (2005), 239–258.
3. M. Ionescu, D. Sburlan, On P Systems with Promoters/Inhibitors, International

Journal of Universal Computer Science, 10, 5 (2004), 581–599.
4. Gh. Păun, Membrane Computing. An Introduction, Springer-Verlag, Berlin, 2002.
5. G. Rozenberg, A. Salomaa, The Mathematical Theory of L Systems, Academic Press,

New York, 1980.
6. G. Rozenberg, A. Salomaa, Eds., Handbook of Formal Languages, Springer-Verlag,

Berlin, 1997.
7. D. Sburlan, Promoting and Inhibiting Contexts in Membrane Systems, doctoral The-

sis, University of Seville, Spain, 2006.
8. D. Sburlan, Further Results on P Systems with Promoters/Inhibitors, International

Journal of Foundations of Computer Science, 17, 1 (2006), 205–222.

