
Towards a Characterization of P Systems with

Minimal Symport/Antiport and Two
Membranes ?

Artiom Alhazov1,2 and Yurii Rogozhin1

1 Institute of Mathematics and Computer Science
Academy of Sciences of Moldova
{artiom,rogozhin}@math.md

2 Research Group on Mathematical Linguistics
Rovira i Virgili University, Tarragona, Spain

artiome.alhazov@estudiants.urv.cat

Abstract. We prove that any set of numbers containing zero generated
by symport/antiport P systems with two membranes and minimal co-
operation is finite (for both symport/antiport P systems and for purely
symport P systems). On the other hand, one additional object in the out-
put membrane allows symport/antiport P systems with two membranes
and minimal cooperation generate any recursively enumerable sets of nat-
ural numbers without zero. The same question for symport P systems
with two membranes and minimal cooperation (is only one additional
object in the output membrane sufficient in order to get universality?)
is still open.

1 Introduction

P systems with symport/antiport rules, i.e., P systems with pure communica-
tion rules assigned to membranes, first were introduced in [18]; symport rules
move objects across a membrane together in one direction, whereas antiport
rules move objects across a membrane in opposite directions. These operations
are very powerful, i.e., P systems with symport/antiport rules have universal
computational power with only one membrane, e.g., see [9], [13], [10].

A comprehensive overview of the most important results obtained in the area
of P systems and tissue P systems with symport/antiport rules, especially with
respect to the development of computational completeness results improving
descriptional complexity parameters as the number of membranes and cells,
respectively, and the weight of the rules as well as the number of objects can be
found in [1].

? The work of the first author is partially supported by the project TIC2003-09319-
C03-01 from Rovira i Virgili University, and the second author is supported by the
project 06.411.03.04P from Consiliul Suprem Pentru Ştiinta şi Dezvoltare Tehno-
logică al Academiei de Ştiinte a Moldovei.

Minimal Symport/Antiport and Two Membranes 103

At first we show that if some P system with two membranes and with mini-
mal cooperation, i.e., a P system with symport/antiport rules of weight one or
a P system with symport rules of weight two, generates a set of numbers con-
taining zero, then this set is finite. After that we prove that P systems with
symport/antiport rules of weight one can generate any recursively enumerable
set of natural numbers without zero (i.e., they are computationally complete
with just one superfluous object remaining in the output membrane at the
end of a halting computation). Thus we improved the result from [1] for sym-
port/antiport P systems with two membranes and minimal cooperation from
three objects down to one object and showed the optimality of this result.

The same question for symport P systems with two membranes and minimal
cooperation (is only one additional object in the output membrane sufficient in
order to get universality?) is still open. Notice that symport/antiport P systems
with three membranes and minimal cooperation can generate any recursively
enumerable sets of natural numbers without using superfluous objects in the
output membrane [3]. The question about precise characterization of computa-
tional power of symport/antiport P systems with two membranes and minimal
cooperation is still open.

2 Basic Notations and Definitions

For the basic elements of formal language theory needed in the following, we
refer to [23]. We just list a few notions and notations: N denotes the set of
natural numbers (i.e., of non-negative integers). V ∗ is the free monoid gener-
ated by the alphabet V under the operation of concatenation and the empty
string, denoted by λ, as unit element; by NRE, NREG, and NFIN we denote
the family of recursively enumerable sets, regular sets, and finite sets of natural
numbers, respectively. For k ≥ 1, by NkRE we denote the family of recursively
enumerable sets of natural numbers excluding the initial segment 0 to k − 1.
Equivalently, NkRE = {k + L | L ∈ NRE}, where k +L = {k + n | n ∈ L}. Par-
ticularly, N1RE = {N ∈ NRE | 0 /∈ N}. We will also use the next notations:
N30FIN = {N ∈ NFIN | 0 ∈ N} and N30SEG1 = {{k ∈ N | k < n} | n ≥ 0}.

The families of recursively enumerable sets of vectors of natural numbers are
denoted by PsRE.

2.1 Counter Automata

A non-deterministic counter automaton (see [8], [1]) is a construct

M = (d, Q, q0, qf , P) , where

– d is the number of counters, and we denote D = {1, ..., d};
– Q is a finite set of states, and without loss of generality, we use the notation

Q = {qi | 0 ≤ i ≤ f} and F = {0, 1, ..., f},
– q0 ∈ Q is the initial state,
– qf ∈ Q is the final state, and

104 A. Alhazov and Y. Rogozhin

– P is a finite set of instructions of the following form:

1. (qi → ql, k+), with i, l ∈ F, i 6= f, k ∈ D (“ increment” -instruction).
This instruction increments counter k by one and changes the state of
the system from qi to ql.

2. (qi → ql, k−), with i, l ∈ F, i 6= f, k ∈ D (“ decrement” -instruction). If
the value of counter k is greater than zero, then this instruction decre-
ments it by 1 and changes the state of the system from qi to ql. Other-
wise (when the value of counter k is zero) the computation is blocked in
state qi.

3. (qi → ql, k = 0), with i, l ∈ F, i 6= f, k ∈ D (“ test for zero”
-instruction). If the value of counter k is zero, then this instruction
changes the state of the system from qi to ql. Otherwise (the value stored
in counter k is greater than zero) the computation is blocked in state qi.

4. halt. This instruction stops the computation of the counter automaton,
and it can only be assigned to the final state qf .

A transition of the counter automaton consists in updating/checking the
value of a counter according to an instruction of one of the types described
above and by changing the current state to another one. The computation starts
in state q0 with all counters being equal to zero. The result of the computation
of a counter automaton is the value of the first k counters when the automaton
halts in state qf ∈ Q (without loss of generality we may assume that in this
case all other counters are empty). A counter automaton thus (by means of all
computations) generates a set of k-vectors of natural numbers.

It is known that any set of k-vectors of natural numbers from PsRE can be
generated by a counter automaton with k + 2 counters where only “ increment”
-instructions are needed for the first k counters. We will use this fact in our
proofs.

2.2 P Systems with Symport/Antiport Rules

The reader is supposed to be familiar with basic elements of membrane comput-
ing, e.g., from [20]; comprehensive information can be found in the P systems
web page, [27].

A P system with symport/antiport rules is a construct

Π = (O, µ, w1, . . . , wk , E, R1, . . . , Rk, i0), where

1. O is a finite alphabet of symbols called objects;
2. µ is a membrane structure consisting of k membranes that are labelled in a

one-to-one manner by 1, 2, . . . , k;
3. wi ∈ O∗, for each 1 ≤ i ≤ k, is a finite multiset of objects associated with

the region i (delimited by membrane i);
4. E ⊆ O is the set of objects that appear in the environment in an infinite

number of copies;

Minimal Symport/Antiport and Two Membranes 105

5. Ri, for each 1 ≤ i ≤ k, is a finite set of symport/antiport rules associated
with membrane i; these rules are of the forms (x, in) and (y, out) (symport
rules) and (y, out; x, in) (antiport rules), respectively, where x, y ∈ O+;

6. i0 is the label of an elementary membrane of µ that identifies the correspond-
ing output region.

A P system with symport/antiport rules is defined as a computational device
consisting of a set of k hierarchically nested membranes that identify k distinct
regions (the membrane structure µ), where to each membrane i there are assigned
a multiset of objects wi and a finite set of symport/antiport rules Ri, 1 ≤ i ≤ k.
A rule (x, in) ∈ Ri permits the objects specified by x to be moved into region i
from the immediately outer region. Notice that for P systems with symport rules
the rules in the skin membrane of the form (x, in), where x ∈ E∗, are forbidden.
A rule (x, out) ∈ Ri permits the multiset x to be moved from region i into
the outer region. A rule (y, out; x, in) permits the multisets y and x, which are
situated in region i and the outer region of i, respectively, to be exchanged. It is
clear that a rule can be applied if and only if the multisets involved by this rule
are present in the corresponding regions. The weight of a symport rule (x, in)
or (x, out) is given by |x| , while the weight of an antiport rule (y, out; x, in) is
given by max{|x|, |y|}.

As usual, a computation in a P system with symport/antiport rules is ob-
tained by applying the rules in a non-deterministic maximally parallel man-
ner. Specifically, in this variant, a computation is restricted to moving objects
through membranes, since symport/antiport rules do not allow the system to
modify the objects placed inside the regions. Initially, each region i contains the
corresponding finite multiset wi, whereas the environment contains only objects
from E that appear in infinitely many copies.

A computation is successful if starting from the initial configuration, the P
system reaches a configuration where no rule can be applied anymore. The result
of a successful computation is a natural number that is obtained by counting
all objects (only the terminal objects as it done in [2], if in addition we specify
a subset of O as the set of terminal symbols) present in region i0. Given a P
system Π , the set of natural numbers computed in this way by Π is denoted by
N(Π) (or N(Π)T if the terminal symbols are distinguished). If the multiplicity
of each (terminal) object is counted separately, then a vector of natural numbers
is obtained, denoted by Ps(Π), see [20].

By
NOPm(syms, antit)

we denote the family of sets of natural numbers that are generated by a P system
with symport/antiport rules having at most m > 0 membranes, symport rules
of size at most s ≥ 0, and antiport rules of size at most t ≥ 0. By

NkOPm(syms, antit)

we denote the corresponding families of natural numbers without initial segment
{0, 1, . . . , k− 1} generated by P systems. If we replace numbers by vectors, then

106 A. Alhazov and Y. Rogozhin

in the notations above N is replaced by Ps. When any of the parameters m, s, t
is not bounded, it is replaced by ∗. If t = 0, then we may even omit antit.

3 The Garbage is Unavoidable

Theorem 1. If M ∈ NOP2(sym1, anti1), then 0 ∈ M ⇒ M ∈ NFIN .

Proof. Consider an arbitrary P system Π with two membranes and symport/an-
tiport rules of weight one,

Π = (O, [
1

[
2

]
2

]
1
, w1, w2, E, R1, R2, 2).

For Π , consider some computation C generating 0: C ends in some configuration
C with nothing in membrane 2, u1 ∈ (O − E)∗ and ue ∈ E∗ in membrane 1
and u0 ∈ (O − E)∗ in the environment. Finally, consider an arbitrary halting
computation C′ of Π : C′ ends in some configuration C ′ with v2 ∈ (O − E)∗

and vf ∈ E∗ in membrane 2, with v1 ∈ (O − E)∗ and ve ∈ E∗ in membrane 1
and v0 ∈ (O − E)∗ in the environment. We are claiming that |v2vf | + |v1ve| ≤
|w2|+ |w1| (i.e., the total number of objects in the system cannot grow without
starting an infinite computation, and thus Π cannot generate numbers greater
than the initial number of objects inside it).

Let us assume the contrary. Since the number of objects inside the system
can only increase by symport rules, some rule p0 : (s0, in) ∈ R1 had to be applied
at some step of C′ (by definition s0 ∈ O − E). This implies that s0 has been
brought to the environment. We can assume that rules pi : (si, out; si−1, in) ∈ R1,
1 ≤ i < n, have been applied (n ≥ 0), si ∈ O − E, 1 ≤ i ≤ n. Suppose also that
n is maximal (sn was not brought to the environment by antiport with another
object from O − E). Thus R1 contains either a rule p : (sn, out) ∈ R1, or p′ :
(sn, out; a, in) ∈ R1, a ∈ E.

Now let us examine the final configuration C of the computation generating 0.
Recall that since region 2 is empty, we cannot “hide” anything there. If s0 is in
u0, then p0 can be applied, hence C is not final. Therefore (region 2 is empty) s0

is in u1. For all 1 ≤ i ≤ n, given si−1 ∈ w1, if si is in u0, then pi can be applied,
hence C is not final. Consequently (region 2 is empty), si is in w1 as well. By
induction, we obtain that sn is in w1. However, this implies that either p ∈ R
and p can be applied, or some p′ ∈ R and p′ can be applied, therefore C is not
final.

This implies that if a system may generate 0, then any computation where
the number of objects inside the output membrane is increased cannot halt.
Therefore, Π cannot generate infinite sets containing 0. ut

The corresponding result also holds for systems with symport of weight at
most two, but the proof is more difficult.

Theorem 2. If M ∈ NOP2(sym2), then 0 ∈ M ⇒ M ∈ NFIN .

Minimal Symport/Antiport and Two Membranes 107

Proof. Consider an arbitrary P system Π with two membranes and symport
rules of weight at most two, Π = (O, [

1
[
2

]
2

]
1
, w1, w2, E, R1, R2, 2); without

restricting generality we may assume that the objects that compose w1 and
w2 are disjoint from the objects in E. For Π , consider some computation C
generating 0: C ends in some configuration C with nothing in membrane 2,
u1 ∈ (O−E)∗ and ue ∈ E∗ in membrane 1 and u0 ∈ (O−E)∗ in the environment.
Finally, consider an arbitrary halting computation C ′ of Π : C′ ends in some
configuration C ′ with v2 ∈ (O − E)∗ and vf ∈ E∗ in membrane 2, with v1 ∈
(O−E)∗ and ve ∈ E∗ in membrane 1 and v0 ∈ (O−E)∗ in the environment. We
are claiming that |v2vf | + |v1ve| ≤ |w2| + |w1| (i.e., the total number of objects
in the system cannot grow without starting an infinite computation, and thus Π
cannot generate numbers greater than the initial number of objects inside it).

Let us assume the contrary. Denote by I0 the set of objects from O − E
that we know must be in the environment in order for Π to halt with region
2 being empty; start with I0 = ∅. Since bringing from the environment some
object a ∈ E ∪ I0 is necessary (though not sufficient) to increase the number
of objects inside the system, some rule (ab, in) ∈ R1 had to be applied at some
step of C′ (if a ∈ E, by definition b ∈ O − E; if a ∈ I0, then also b must be in
O−E, otherwise rule (ab, in) would be applicable in C, which is supposed to be
a halting configuration).

Clearly, object b was originally in region 1, so it has been brought to the
environment by some rule (b, out) ∈ R1 or (bc, out) ∈ R1. In the first case, the
system cannot halt without “hiding” object b in region 2 (contradiction with the
assumption on C). In the second case, we have a few possibilities. If c = a′ ∈ E,
then by application of rules (a′b, out), (ab, in) we have simply exchanged a′ by
a in region 1; since a′ has been brought in the region 1 beforehand, we can
repeat the same reasoning taking a′ instead of a (this may only happen a finite
number of times since we examine the computation C backwards). Finally, if
c = b′ ∈ O−E, then by application of rules (a′b, out), (ab, in) we have exchanged
b′ by a in region 1. This will not increase the number of objects unless b′ does
not stay in the environment. Notice also that in configuration C object b′ has to
be in the environment. Add b′ to I0 and repeat the same reasoning.

The argument above implies that if a system can increase the number of
objects inside it, then it cannot halt without any objects in region 2. Therefore,
Π cannot generate infinite sets containing 0. ut

4 Universality

Theorem 3. NOP2(sym1, anti1) = N1RE ∪ F , where
N30SEG1 ⊆ F ⊆ N30FIN .

Proof. We give here only sketch of a proof. The full variant of the proof is rather
long and contains a lot of cases and will be prepared separately. While the upper
bound of F results from Theorem 1, the lower bound of F is satisfied even
by one-membrane constructions, see [4]. In what follows, we deal with proving
N1OP2(sym1, anti1) = N1RE.

108 A. Alhazov and Y. Rogozhin

We simulate a counter automaton M = (d, Q, q0, qf , P) which starts with
empty counters. We also suppose that all instructions from P are labelled in a
one-to-one manner with elements of {1, . . . , n} = I ; I is the disjoint union of
{n} as well as I+, I−, and I=0 where by I+, I−, and I=0 we denote the set of
labels for the “ increment” -, “ decrement” -, and “ test for zero” -instructions,
respectively. We use also the next notations: C = {ck}, k ∈ D, Q′ = {q′i}, qi ∈ Q.

We construct the P system Π1 as follows:

Π1 = (O, [
1

[
2

]
2

]
1
, w1, w2, E, R1, R2, 2),

O = E ∪ {Ic, M, S, T1, T2, J1, J2} ∪ {bj , dj | j ∈ I},

E = Q ∪ Q′ ∪ C ∪ {aj , a
′

j | j ∈ I} ∪ {J0, F1, F2, F3, F4, F5},

w1 = J1J2,

w2 = T1T2MS
∏

j∈I

bj

∏

j∈I

dj ,

Ri = Ri,s ∪ Ri,r ∪ Ri,f , i = 1, 2.

The functioning of this system may be split into three stages:

1. preparation of the system for the computation.
2. simulation of instructions of the counter automaton.
3. terminating the computation.

We code the counter automaton as follows:
Region 1 will hold the current state of the automaton, represented by a

symbol qi ∈ Q; region 2 will hold the value of all counters, represented by the
number of occurrences of symbols ck ∈ C, k ∈ D, where D = {1, ..., d}.

We split our proof into several parts that depend on the logical separation
of the behavior of the system. We will present the rules and the initial symbols
for each part, but we remark that the system we present is the union of all these
parts. The rules Ri are given by three phases:

1. START;
2. RUN;
3. END.

The parts of the computations illustrated in the following describe different
stages of the evolution of the P system. For simplicity, we focus on explaining a
particular stage and omit the objects that do not participate in the evolution at
that time. Each rectangle represents a membrane, each variable represents a copy
of an object in a corresponding membrane (symbols outside of the outermost
rectangle are found in the environment). In each step, the symbols that will
evolve (will be moved) are written in boldface. The labels of the applied rules
are written above the symbol ⇒.

Minimal Symport/Antiport and Two Membranes 109

1. START. During the first stage we bring from the environment an arbitrary
number of symbols ck, k ∈ D, into region 1. We suppose that we have enough
symbols ck in region 1 to perform the computation. Otherwise, the computation
will never stop. We also use the following idea: in our system we have a symbol
M which moves from region 2 to region 1 and back in an infinite loop. This loop
may be stopped only if all stages completed correctly.

R1,s = {1s1 : (Ic, in), 1s2 : (Ic, out; ck, in), 1s3 : (S, out; q0, in) | ck ∈ C}

R2,s = {2s1 : (M, out), 2s2 : (M, in), 2s3 : (S, out; Ic, in)}

Symbol Ic brings symbols ck from the environment into region 1 (rules 1s1,
1s2), where they may be used during the simulation of the “ increment” instruc-
tion and then moved to region 2.

We illustrate the beginning of the computation as follows:

ck1
ck2

. . . ckt
q0 Ic MS ⇒1s2,2s1 Icck2

. . . ckt
q0 ck1

M S ⇒1s1,2s2

ck2
. . . ckt

q0 Icck1
MS ⇒1s2,2s1 . . . Icq0 ck1

ck2
. . . ckt

M S ⇒1s1,2s2

q0 Icck1
ck2

. . . ckt
MS ⇒2s1,2s3 q0 Sck1

ck2
. . . ckt

M Ic ⇒1s3,2s2

S q0ck1
ck2

. . . ckt
MIc

Ic is eventually exchanged with S, which in turn brings q0 into region 1,
and the simulation of the register machine begins. Symbol Ic is then situated
in region 2 and can be used during the second stage as a “trap” symbol, i.e., in
order to organize an infinite computation.

Notice that some rules are never executed during a correct simulation: ap-
plying them would lead to an infinite computation. To help the reader, we will
underline the labels of such rules in the description below.

110 A. Alhazov and Y. Rogozhin

2. RUN.

R1,r = {1r1 : (qi, out; aj , in) | (j : qi → ql, ckγ) ∈ P, γ ∈ {+,−, = 0}}

∪ {1r2 : (bj , out; a′

j , in), 1r3 : (aj , out; J0, in),

1r4 : (J1, out; bj , in) | j ∈ I} ∪ {1r5 : (J0, out; J1, in)}

∪ {1r6 : (a′

j , out; dj , in) | j ∈ I− ∪ I=0}

∪ {1r7 : (a′

j , out; J0, in), 1r8 : (J0, out; dj , in) | j ∈ I+}

∪ {1r9 : (J2, out; dj , in) | j ∈ I+ ∪ I−}

∪ {1r10 : (a′

j , out; J1, in) | j ∈ I=0}

∪ {1r11 : (dj , out; q′l, in) | (j : qi → ql, ckγ) ∈ P, γ ∈ {+,−, = 0}}

∪ {1r12 : (q′j , out, qj , in), 1r13 : (bj , out), 1r14 : (dj , out) | j ∈ I}.

R2,r = {2r1 : (bj , out; aj , in) | j ∈ I}

∪ {2r2 : (ck, out; a′

j , in) | (j : qi → ql, ck = 0) ∈ P}

∪ {2r3 : (ck, out; bj , in) | (j : qi → ql, ck−) ∈ P}

∪ {2r4 : (a′

j , out; J1, in) | j ∈ I=0 ∪ I+}

∪ {2r5 : (a′

j , out) | j ∈ I−}

∪ {2r6 : (a′

j , out; ck, in) | j : qi → ql, ck+) ∈ P}

∪ {2r7 : (aj , out; J1, in) | j ∈ I}

∪ {2r8 : (aj , out; J2, in) | j ∈ I}

∪ {2r9 : (dj , out; bj , in) | j ∈ I=0 ∪ I+}

∪ {2r10 : (dj , out; a′

j , in) | j ∈ I−}

∪ {2r11 : (q′l, out; dj , in), 2r12 : (q′l, out; J1, in),

2r13 : (q′l, in) | (j : qi → ql, ck+) ∈ P}

∪ {2r14 : (J2, out; dj , in) | j ∈ I=0 ∪ I−}

∪ {2r15 : (J2, out; a′

j , in) | j ∈ I+}

∪ {2r16 : (Ic, out; aj , in) | j ∈ I}

∪ {2r17 : (Ic, out; a′

j , in), | j ∈ I+ ∪ I−}

∪ {2r18 : (Ic, out; J0, in)}

Let us informally explain some details of the simulation design: The state
symbol qi brings into the system the instruction symbol aj , which “activates”
another instruction symbol bj . The latter, in turn, brings symbol a′

j into the
system. While symbols aj , a′

j return to the environment and bj returns to region
2, yet another instruction symbol, dj , is activated, which will also return to
region 2. Somewhere in the process, ck is either moved to region 2 (increment),
or it is removed from region 2 (decrement), or it is not present in region 2 (zero
test); the next state symbol q′l is brought into the system, which will exchange
with ql and the next instruction can be simulated.

Minimal Symport/Antiport and Two Membranes 111

Symbols aj and a′

j travel from the environment to region 2 and back (except
for a′

j during the zero test), while bj and dj travel from region 2 to the environ-
ment and back. The most difficult situations are when either of these symbols is
in region 1. Symbols J0, J1 and J2 guide this process.

For instance, aj brings J2 to region 2, so that it helps a′

j come to region 2
(increment) or it helps dj return to region 2 (decrement or zero test).

Symbol aj can “legally” return to the environment bringing J0 to region 1
only if symbol bj brings J1 in the environment, so that it would return J0 to
the environment (otherwise, 2r18 is executed). On the other hand, aj can only
come to region 2 when bj is there.

Likewise, in the increment case, a′

j can “legally” return to the environment
bringing J0 to region 1 only if symbol dj returns J0 to the environment (other-
wise, 2r18 is executed). On the other hand, a′

j can only come to region 2 with
the help of J2 (increment), or when dj is there (decrement).

If bj does not come to the environment when it “should”, it would lead J0

(activated by aj) without J1, causing 2r18 to be executed. On the other hand,
the case when bj “should” come to region 2 is handled by Lemma 1.

If dj comes to region 2 “too soon”, then q′l would never be brought into
the system; then the next instructions will not be simulated, and the infinite
computation would be enforced by M . On the other hand, the case when dj

“should” come to region 2 is handled by Lemma 2.

We will now consider the “main” line of computation.

“ Increment” -instruction:

(i) There is some ck in region 1:

qlq
′

laja
′

jJ0 qickJ1J2 bjdjIc ⇒1r1 qiqlq
′

la
′

jJ0 ajckJ1J2 bjdjIc ⇒2r1

qiqlq
′

la
′

jJ0 bjckJ1J2 ajdjIc ⇒1r2,2r8 qiqlq
′

lbjJ0 a′

jckJ1aj J2djIc ⇒1r3,1r4,2r15

qiqlq
′

lajJ1 ckJ0bjJ2 a′

jdjIc ⇒1r5,2r6,2r9 qiqlq
′

lajJ0 a′

jJ1djJ2 ckbjIc ⇒1r7,1r11

qiqldjaja
′

j J0J1q
′

lJ2 ckbjIc ⇒1r8,2r13 qiqlaja
′

jJ0 djJ1J2 q′

lckbjIc ⇒2r11

qiqlaja
′

jJ0 q′

lJ1J2 djckbjIc ⇒1r12 qiq
′

laja
′

jJ0 qlJ1J2 djckbjIc

In that way, qi is replaced by ql and ck is moved from region 1 into region 2.
Notice that symbols aj , bj , a′

j , dj , J2, J1, J0 have returned to their original
positions.

(ii) There is no ck in region 1:

112 A. Alhazov and Y. Rogozhin

qlq
′

laja
′

jJ0 qiJ1J2 bjdjIc ⇒1r1 qiqlq
′

la
′

jJ0 ajJ1J2 bjdjIc ⇒2r1

qiqlq
′

la
′

jJ0 bjJ1J2 ajdjIc ⇒1r2,2r8 qiqlq
′

lbjJ0 a′

jJ1aj J2djIc ⇒1r3,1r4,2r15

qiqlq
′

lajJ1 J0bjJ2 a′

jdjIc (A)

Now there are two possibilities: we may either apply
a) rule 2r9 or
b) rule 1r2.

Consider case a):

qiqlq
′

lajJ1 J0bjJ2 a′

jdjIc ⇒1r5,2r9 qiqlq
′

lajJ0 J1djJ2 a′

jbjIc ⇒1r11,2r7

qiqldjajJ0 a′

jq
′

lJ2 J1bjIc ⇒1r7,1r9,2r13 or 1r12 qiqlaja
′

jJ2 J0dj q′

lJ1bjIc or

qiq
′

laja
′

jJ2 J0djql J1bjIc

After that rule 2r18 will eventually be applied, object Ic will be moved to region
1 and then applying rules 1s1,1s2 leads to an infinite computation.

It is easy to see that case b) also leads to an infinite computation:

qiqlq
′

laja
′

jJ1 J0bjJ2 a′

jdjIc ⇒1r2,1r5 qiqlq
′

lajbjJ0 J1a
′

jJ2 a′

jdjIc

Now there are two possibilities, we can apply rule 1r4 (and we get the previous
configuration (A)) or rule 2r7. Consider the last case:

qiqlq
′

lajbjJ0 J1a
′

jJ2 a′

jdjIc ⇒1r7,2r7 qiqlq
′

laja
′

jbjJ0 J0a
′

jJ2 J1djIc

Thus rule 2r18 will be applied eventually (that leads to an infinite computation).
So in the case if we have not enough symbols ck in region 1 it leads to an infinite
computation.

“ Decrement” -instruction:

(i) There is some ck in region 2:

qlq
′

lalaja
′

jJ0 qiJ1J2 bjckdjIc ⇒1r1 qiqlq
′

lala
′

jJ0 ajJ1J2 bjckdjIc ⇒2r1

qiqlq
′

lala
′

jJ0 bjJ1J2 ajckdjIc ⇒1r2,2r8 qiqlq
′

lalbjJ0 a′

jJ1aj J2ckdjIc

⇒1r3,1r4,2r10 qiqlq
′

lalajJ1 djJ0bj J2cka
′

jIc (B)

Minimal Symport/Antiport and Two Membranes 113

⇒1r5,1r11,2r3,2r5 qiqldjalajJ0 q′

lJ1cka
′

j J2bjIc ⇒1r6,1r12

qiq
′

lalaja
′

jJ0 qlJ1ckdj J2bjIc ⇒1r1,2r14 qiqlq
′

laja
′

jJ0 alJ1ckJ2 bjdjIc

In the way described above, qi is replaced by ql and ck is removed from region
2 to region 1. Notice that symbols aj , bj , a′

j , J2, J1, J0 have returned to their
original positions. Symbol dj returns to region 2 in the first step of the simulation
of the next instruction (the last step of the illustration).

(ii) There is no ck in region 2:

We start with configuration (B) without ck in region 2.

qiqlq
′

lalaja
′

jJ1 djJ0bj J2a
′

jIc ⇒1r5,1r11,2r5 qiqldjalajbjJ0 q′

lJ1a
′

ja
′

j J2Ic

Consider two objects a′

j in region 1. One object a′

j will be returned to the
environment by rule 1r6 and other one will be moved to region 2 by rule 2r17,
that will cause an infinite computation.

So in the case if we have not symbol ck in region 2 it leads to an infinite com-
putation.

“ Test for zero” -instruction:

qi is replaced by ql if there is no ck in region 2, otherwise a′

j in region 1
exchanges with ck in region 2 and the computation will never stop.

(i) There is no ck in region 2:

qlq
′

lalaja
′

jJ0 qiJ1J2 bjdjIc ⇒1r1 qiqlq
′

lala
′

jJ0 ajJ1J2 bjdjIc ⇒2r1

qiqlq
′

lala
′

jJ0 bjJ1J2 ajdjIc ⇒1r2,2r8 qiqlq
′

lalbjJ0 a′

jJ1aj J2djIc ⇒1r3,1r4

qiqlq
′

lalajJ1 bja
′

jJ0 J2djIc ⇒1r5,2r9 qiqlq
′

lalajJ0 J1a
′

jdj J2bjIc ⇒1r11

qiqlalajdjJ0 J1a
′

jq
′

l J2bjIc ⇒1r6,1r12 qiq
′

lalaja
′

jJ0 J1qldj J2bjIc ⇒1r1,2r14

qiqlq
′

laja
′

jJ0 alJ1J2 bjdjIc

In this case, qi is replaced by ql. Notice that symbols aj , bj , a′

j , J2, J1, J0 have
returned to their original positions. Symbol dj returns to region 2 in the first
step of the simulation of the next instruction (the last step of the illustration).

(ii) There is some ck in region 2:

114 A. Alhazov and Y. Rogozhin

qlq
′

lalaja
′

jJ0 qiJ1J2 bjckdjIc ⇒1r1 qiqlq
′

lala
′

jJ0 ajJ1J2 bjckdjIc ⇒2r1

qiqlq
′

lala
′

jJ0 bjJ1J2 ajckdjIc ⇒1r2,2r8 qiqlq
′

lalbjJ0 a′

jJ1aj J2ckdjIc

⇒1r3,1r4,2r2 qiajqlq
′

lalJ1 bjckJ0 J2a
′

jdjIc ⇒1r5,2r9

qiqlq
′

lajalJ0 J1djck J2a
′

jbjIc ⇒1r11,2r4 qiqlajaldjJ0 a′

jq
′

lck J1J2bjIc

⇒1r6,1r12 qiq
′

laja
′

jalJ0 djqlck J1J2bjIc ⇒1r1,2r14

qiqlq
′

laja
′

jJ0 alckJ2 J1bjdjIc

Notice, that if object J1 is situated in region 2, then it leads to infinite computa-
tion. Indeed, after returning of object al into environment (rule 1r3) object J0

will be moved to region 1 and rule 2r18 will be applied eventually. Now object
Ic will bring objects ck from the environment and the computation will never
stop (rules 1s1, 1s2).

3. END.

R1,f = {1f1 : (T1, out; F1, in), 1f2 : (F1, out; F2, in), 1f3 : (F2, out; F3, in),

1f4 : (F3, out; F4, in), 1f5 : (F4, out : F5, in), 1f6 : (T2, out)}

∪ {1f7 : (M, out; T2, in), 1f8 : (J2, out; T2, in)},

R2,f = {2f1 : (T1, out; qf , in), 2f2 : (qf , out), 2f3 : (T2, out; qf , in)}

∪ {2f4 : (bj , out; F5, in), 2f5 : (dj , out; F5, in) | j ∈ I}

∪ {2f6 : (F5, out)}.

Once the register machine reaches the final state, qf is in region 1. It takes
both T1 and T2 to region 1, in either order. The duty of T2 is to bring both J2

and M to the environment (J2 can be brought to the environment immediately,
or after M if the latter immediately goes to the environment; the object M can
oscillate for indefinite time, but we are interested in halting computations). T2

starts a chain of exchanges, to give J2 time to go to the environment, and then
have F5 remove symbols bj , dj from region 2.

We illustrate the end of computations as follows:

F1F2F3F4F5J0 qfJ1J2 T1T2MbjdjIc ⇒2f1,2s1

F1F2F3F4F5J0 T1J1J2M qfT2bjdjIc ⇒1f1,2f2,2s2

T1F2F3F4F5J0 F1J1J2qf MT2bjdjIc ⇒1f2,2f3,2s1

Minimal Symport/Antiport and Two Membranes 115

T1F1F3F4F5J0 T2F2J1J2M qf bjdjIc ⇒1f3,1f6,2f2,2s2

T1T2F1F2F4F5J0 F3J1J2qf MbjdjIc ⇒1f4,1f8,2s1

T1F1F2F3F5J0J2 T2F4J1qfM bjdjIc ⇒1f5,1f6,2s2

T1T2F1F2F3F4J0J2 F5J1qf MbjdjIc ⇒2f4,2s1

T1T2F1F2F3F4J0J2 bjJ1qfM F5djIc ⇒1r13,1f7,2f6

T1F1F2F3F4bjJ0J2M T2J1qfF5 djIc ⇒1f6,1r4,2f5

T1T2F1F2F3F4J0J1J2M bjqfdj F5Ic ⇒1r13,1r14,2f5

T1T2F1F2F3F4bjdjJ0J2M J1qfF5 Ic

We continue in this manner until all objects bj , dj , j ∈ I from the elementary
membrane 2 have been moved to the environment. Notice that the result in the
elementary membrane 2 (multiset ct

1) cannot be changed during phase END, as
object J2 now is situated in the environment. Thus, object a′

j cannot enter into
region 2 by rule 2r15 and therefore cannot bring object ck into region 2 by rule
2r6. Recall that the counter automaton can only increment the first counter c1,
so all other computations of P system Π1 cannot change the number of symbols
c1 in the elementary membrane. Thus, at the end of a terminating computation,
in the elementary membrane there are the result (multiset ct

1) and only the one
additional object Ic. ut

Lemma 1. In the construction of Theorem 3, if an object bj , during phase
“RUN” returns to the environment after coming to region 1 from the environ-
ment, then the computation never stops.

Lemma 2. In the construction of Theorem 3, if an object dj , during phase
“RUN” returns to the environment after coming to region 1 from the environ-
ment, then the computation never stops.

We skip the (very technical) proofs of these lemmas, in particular, for con-
ciseness reasons.

5 Conclusion

In this paper we have proved the new results that any set of natural numbers
containing zero generated by symport/antiport P systems with two membranes
and minimal cooperation is finite (for both symport/antiport P systems and for
purely symport P systems) and one additional object in the output membrane
allows symport/antiport P systems with two membranes and minimal coopera-
tion generate any recursively enumerable sets of natural numbers without zero.

116 A. Alhazov and Y. Rogozhin

Thus we improved the result from [1] for symport/antiport P systems with two
membranes and minimal cooperation from three objects down to one object and
showed the optimality of this result.

The same question for symport P systems with two membranes and minimal
cooperation (is only one additional object in the output membrane sufficient
in order to get universality?) is still open. We conjecture that the same is true
also for symport P systems with two membranes and minimal cooperation, i.e.,
one additional object in the output membrane allows generate any recursively
enumerable sets of natural numbers without zero. The question about precise
characterization of computational power of symport/antiport P systems with
two membranes and minimal cooperation is still open.

References

1. A. Alhazov, R. Freund, Yu. Rogozhin: Computational Power of Symport/Antiport:
History, Advances, and Open Problems. Membrane Computing, International
Workshop, WMC 2005, Vienna, 2005, Revised Selected and Invited Papers (R.
Freund, Gh. Păun, G. Rozenberg, A. Salomaa, Eds.), Lecture Notes in Computer
Science 3850 (2006) 1–30.

2. A. Alhazov, R. Freund, Yu. Rogozhin: Some Optimal Results on Communica-
tive P Systems with Minimal Cooperation. Cellular Computing (Complexity As-
pects), ESF PESC Exploratory Workshop (M.A. Gutiérrez-Naranjo, Gh. Păun,
M.J. Pérez-Jiménez, Eds.), Fénix Editora, Sevilla, (2005) 23–36.

3. A. Alhazov, M. Margenstern, V. Rogozhin, Yu. Rogozhin, S. Verlan: Communica-
tive P Systems with Minimal Cooperation. Membrane Computing, International
Workshop, WMC 2004, Milan, 2004, Revised Selected and Invited Papers (G.
Mauri, Gh. Păun, M.J. Pérez-Jiménez, G. Rozenberg, A. Salomaa, Eds.) Lecture
Notes in Computer Science 3365 (2005) 161–177.

4. A. Alhazov, Yu. Rogozhin: Minimal Cooperation in Symport/Antiport P Systems
with One Membrane. Third Brainstorming Week on Membrane Computing (M.A.
Gutiérrez-Naranjo, A. Riscos-Núñez, F.J. Romero-Campero, D. Sburlan, Eds.)
RGNC TR 01/2005, University of Seville, Fénix Editora, Sevilla (2005) 29–34.

5. A. Alhazov, Yu. Rogozhin, S. Verlan: Symport/Antiport Tissue P Systems with
Minimal Cooperation. Cellular Computing (Complexity Aspects), ESF PESC Ex-
ploratory Workshop (M.A. Gutiérrez-Naranjo, Gh. Păun, M.J. Pérez-Jiménez,
Eds.), Fénix Editora, Sevilla (2005) 37–52.

6. F. Bernardini, M. Gheorghe: On the Power of Minimal Symport/Antiport. Work-
shop on Membrane Computing, WMC 2003 (A. Alhazov, C. Mart́ın-Vide, Gh.
Păun, Eds.), Tarragona, 2003, TR 28/03, Research Group on Mathematical Lin-
guistics, Universitat Rovira i Virgili, Tarragona (2003) 72–83.

7. F. Bernardini, A. Păun: Universality of Minimal Symport/Antiport: Five Mem-
branes Suffice. Membrane Computing, International Workshop, WMC 2003, Tar-
ragona, Revised Papers (C. Mart́ın-Vide, G. Mauri, Gh. Păun, G. Rozenberg, A.
Salomaa, Eds.), Lecture Notes in Computer Science 2933 (2004) 43–45.

8. R. Freund, M. Oswald: GP Systems with Forbidding Context. Fundamenta Infor-
maticae 49, 1–3 (2002) 81–102.

9. R. Freund, M. Oswald: P Systems with Activated/Prohibited Membrane Channels.
Membrane Computing International Workshop, WMC-CdeA 02, Curtea de Argeş,

Minimal Symport/Antiport and Two Membranes 117

2002. Revised Papers (Gh. Păun, G. Rozenberg, A. Salomaa, C. Zandron, Eds.),
Lecture Notes in Computer Science 2597 (2003) 261–268.

10. R. Freund, A. Păun: Membrane Systems with Symport/Antiport: Universality Re-
sults. Membrane Computing International Workshop, WMC-CdeA 02, Curtea de
Argeş, 2002. Revised Papers (Gh. Păun, G. Rozenberg, A. Salomaa, C. Zandron,
Eds.), Lecture Notes in Computer Science 2597 (2003) 270–287.

11. P. Frisco: About P Systems with Symport/Antiport. Second Brainstorming Week
on Membrane Computing (Gh. Păun, A. Riscos-Núñez, A. Romero-Jiménez, F.
Sancho-Caparrini, Eds), TR 01/2004, Research Group on Natural Computing,
University of Seville (2004) 224–236.

12. P. Frisco, H.J. Hoogeboom: P Systems with Symport/Antiport Simulating Counter
Automata. Acta Informatica 41, 2–3 (2004) 145–170.

13. P. Frisco, H.J. Hoogeboom: Simulating Counter Automata by P Systems with
Symport/Antiport. Membrane Computing International Workshop, WMC-CdeA
02, Curtea de Argeş, 2002. Revised Papers (Gh. Păun, G. Rozenberg, A. Salomaa,
C. Zandron, Eds.), Lecture Notes in Computer Science 2597 (2003) 288–301.

14. L. Kari, C. Mart́ın-Vide, A. Păun: On the Universality of P Systems with Minimal
Symport/Antiport Rules. Aspects of Molecular Computing - Essays dedicated to
Tom Head on the occasion of his 70th birthday, Lecture Notes in Computer Science
2950 (2004) 254–265.

15. M. Margenstern, V. Rogozhin, Yu. Rogozhin, S. Verlan: About P Systems with
Minimal Symport/Antiport Rules and Four Membranes. Fifth Workshop on Mem-
brane Computing (WMC5), (G. Mauri, Gh. Păun, C. Zandron, Eds.), Universitá
di Milano-Bicocca, Milan (2004) 283–294.

16. C. Mart́ın-Vide, A. Păun, Gh. Păun: On the Power of P Systems with Symport
Rules, Journal of Universal Computer Science 8, 2 (2002) 317–331.

17. M.L. Minsky: Finite and Infinite Machines. Prentice Hall, Englewood Cliffs, New
Jersey (1967).

18. A. Păun, Gh. Păun: The Power of Communication: P Systems with Sym-
port/Antiport. New Generation Computing 20 (2002) 295–305.

19. Gh. Păun: Computing with Membranes. Journal of Computer and Systems Science
61 (2000) 108–143.

20. Gh. Păun: Membrane Computing. An Introduction. Springer-Verlag (2002).
21. Gh. Păun: Further Twenty Six Open Problems in Membrane Computing (2005).

Third Brainstorming Week on Membrane Computing (M.A. Gutiérrez-Naranjo,
A. Riscos-Núñez, F.J. Romero-Campero, D. Sburlan, Eds.) RGNC TR 01/2005,
University of Seville, Fénix Editora, Sevilla (2005) 249–262.

22. Gh.Păun: 2006 Research Topics in Membrane Computing. Fourth Brainstorming
Week on Membrane Computing, vol. 1 (M.A. Gutiérrez-Naranjo, Gh. Păun, A.
Riscos-Núñez, F.J. Romero-Campero, Eds.), Fénix Edit., Sevilla (2006), 235–251.

23. G. Rozenberg, A. Salomaa (Eds.): Handbook of Formal Languages (3 volumes).
Springer-Verlag, Berlin (1997).

24. Gy. Vaszil: On the Size of P Systems with Minimal Symport/Antiport. Fifth Work-
shop on Membrane Computing (WMC5) (G. Mauri, Gh. Păun, C. Zandron, Eds.),
Universitá di Milano-Bicocca, Milan (2004) 422–431.

25. S. Verlan: Optimal Results on Tissue P Systems with Minimal Symport/ Antiport.
Presented at EMCC meeting, Lorentz Center, Leiden (2004).

26. S. Verlan: Tissue P Systems with Minimal Symport/Antiport. Developments in
Language Theory, DLT 2004 (C.S. Calude, E. Calude, M.J. Dinneen, Eds), Lecture
Notes in Computer Science 3340, Springer-Verlag, Berlin (2004) 418–430.

27. P Systems Webpage, http://psystems.disco.unimib.it

