
P Systems with Symport/Antiport and Time

Hitesh Nagda1, Andrei Păun1,2, and Alfonso Rodŕıguez-Patón2

1 Department of Computer Science/IfM, Louisiana Tech University
P.O. Box 10348, Ruston, LA 71272, USA

{hhn002, apaun}@latech.edu
2 Universidad Politécnica de Madrid - UPM, Facultad de Informática

Campus de Montegancedo S/N, Boadilla del Monte, 28660 Madrid, Spain
arpaton@fi.upm.es

Abstract. We consider symport/antiport P systems using time as the
output of a computation. We describe and study the properties of “timed
symport/antiport systems”, showing that considering the time as sup-
port for reporting the result of computation yields more power/flexibility
to these systems. We were able to improve or match the best results
concerning the symport/antiport systems which consider the output as
originally defined as the number of molecules found in a pre-defined ele-
mentary membrane in the halting configuration of the system.

1 Introduction

We continue the work on symport/antiport P systems [5], [6], [11], [1], [2] using
the paradigm of time as the output of a computation as previously introduced in
[4] and [8]. The idea originates in [12] as Problem W; the novelty is that instead
of the “standard” way to output, like the multiplicities of objects found at the
end at the computation in a distinguished membrane as it was defined in the
model from [11], it seems more “natural” to consider certain events (i.e., config-
urations) that may occur during a computation and to relate the output of such
a computation with the time interval between such distinguished configurations.
Our system will compute a set of numbers like in the case of “normal” sym-
port/antiport [11], but the benefit of the current setting is that the computation
and the observance of the output are now close to the biology and to the tools
used for cell biology (fluorescence microscopy, FACS). The model of the “timed”
P system that we investigate here is the symport/antiport P system. We note
that such a “timed” approach could be applied also to other types of P systems.
Actually the spiking neural P systems ([9], [14]) use a similar idea: the output of
such a system is the time elapsed between two spikes of a pre-defined “output”
neuron. Going back to the symport/antiport model, we are studying another
way of viewing the output of such a system; the motivation comes from the fact
that cells can become fluorescent if, for example, some types of proteins with
fluorescence properties are present in the cells. Such a fluorescent “configura-
tion” of a cell will be the configuration that starts the clock used for the output.
Even more interesting (making our definition a very natural way of viewing the



430 H. Nagda, A. Păun, and A. Rodŕıguez-Patón

output of a system) is the fact that there are tools currently used by researchers
in cell biology that can detect the fluorescence of each cell individually. Such
an automated technique for viewing the output of a computation using cells is
highly desirable since it holds the promise of fast readouts of the computations.

2 Timed Symport/Antiport Systems

We will use a modified definition than the one in [11]; instead of specifying the
output region where the result of the computation will be “stored” in a halting
computation, we specify two relations Cstart and Cstop (which are described by
regular languages) that need to be satisfied by the multisets of objects in the
membrane structure at two different times during the computation. We restrict
the description of Cstart and Cstop to regular languages, each word representing
a possible configuration of the system that satisfies the respective relation due
to two main reasons: first we want to use the idea of restriction in the start/stop
configurations. In this way we make sure that some “artificial” constructs (for
example encoding the whole RE set into the configurations) are not possible,
and on the other hand, the regular languages express enough for the start/stop
configurations to help in obtaining similar universality results as for “regular”
systems with symport/antiport.

An important observation is the fact that we will not require the cell to “stop
working” when reaching the result; i.e., we will not require the strong restric-
tion that the system reaches a halting configuration for a computation to have
a result. It is worth noting that a similar idea of “configuration-based output”
was considered also in [7] where the authors pre-defined in the system two mem-
branes: fin and ack; initially ack is empty, but once it receives an element, the
number of objects hat are present in that moment in fin is the output of the
computation. In this way one can consider the output of non-halting computa-
tions in that case as well. Of course, one can immediately see that in [7] the
result is still encoded as multiplicities of different molecules, in our framework,
we use the time between configurations to encode the result of the computation.

Before progressing further we give some basic notions used in the remainder
of the paper; the language theory notions used but not described are standard,
and can be found in any of the many monographs available, for instance, in [15].

A membrane structure is pictorially represented by a Venn diagram, and it
will be represented here by a string of matching parentheses.

A multiset over a set X is a mapping M : X −→ N. Here we always use
multisets over finite sets X (that is, X will be an alphabet). A multiset with a
finite support can be represented by a string over X ; the number of occurrences of
a symbol a ∈ X in a string x ∈ X∗, denoted by |x|a, represents the multiplicity of
a in the multiset represented by x. Clearly, all permutations of a string represent
the same multiset, and the empty multiset is represented by the empty string,
λ.

We will use symport rules of the form (ab, in) and (ab, out), associated with
a membrane and stating that the objects a, b can enter, respectively, exit the



P Systems with Symport/Antiport and Time 431

membrane together, and antiport rules of the form (a, out; b, in), stating that a
exits and at the same time b enters the membrane.

Based on rules of these types, we modify the definition from [11] to introduce
the model of a timed symport/antiport P system as a construct,

Π = (O, µ, w1, . . . , wm, E, R1, . . . , Rm, Cstart, Cstop),

where:

– O = {a1, . . . , ak} is an alphabet (its elements are called objects);
– µ is a membrane structure consisting of m membranes, with the membranes

(and hence the regions) bijectively labeled with 1, 2, . . . , m; m is called the
degree of Π ;

– wi, 1 ≤ i ≤ m, are strings over O representing multisets of objects associated
with the regions 1, 2, . . . , m of µ, present in the system at the beginning of
a computation;

– E ⊆ O is the set of objects that are continuously available in the environment
in arbitrarily many copies;

– R1, . . . , Rm are finite sets of symport and antiport rules over the alphabet
V associated with the membranes 1, 2, . . . , m of µ;

– Cstart and Cstop are regular subsets of (O∗)m, describing configurations of
Π . We will use a regular language over O∪{$} to describe them, the special
symbol $ 6∈ O being used as a marker between the configurations in the
different regions of the system. More details will be given in the following.

For a symport rule (x, in) or (x, out), we say that |x| is the weight of the rule.
The weight of an antiport rule (x, out; y, in) is max{|x|, |y|}. The rules from a set
Ri are used with respect to membrane i as explained above. In the case of (x, in),
the multiset of objects x enters the region defined by the membrane, from the
surrounding region, which is the environment when the rule is associated with
the skin membrane. In the case of (x, out), the objects specified by x are sent out
of membrane i, into the surrounding region; in the case of the skin membrane,
this is the environment. The use of a rule (x, out; y, in) means expelling the
objects specified by x from membrane i at the same time with bringing the
objects specified by y into membrane i. The objects from E appear in arbitrarily
many copies in the environment. The rules are used in the non-deterministic
maximally parallel manner specific to P systems with symbol objects: in each
step, a maximally parallel multiset of rules is used.

In this way, we obtain transitions between the configurations of the system.
A configuration is described by the m-tuple of multisets of objects present in
the m regions of the system, as well as the multiset of objects from O − E
which were sent out of the system during the computation. It is important to
note that such objects appear only in a finite number of copies in the initial
configuration and can enter the system again (knowing the initial configuration
and the current configuration in the membrane system, one can know precisely
what “extra” objects are present in the environment). On the other hand, it is
not necessary to take care of the objects from E which leave the system because



432 H. Nagda, A. Păun, and A. Rodŕıguez-Patón

they appear in arbitrarily many copies in the environment as defined before (the
environment is supposed to be inexhaustible, irrespective how many copies of
an object from E are introduced into the system, still arbitrarily many remain
in the environment). The initial configuration is α0 = (w1, . . . , wm).

Let us now describe the way this systems “outputs” the result of its compu-
tation: when the system enters some configuration α from Cstart (we also say
that Cstart is satisfied), we start a counter t that is incremented each time the
symport/antiport rules are applied in the nondeterministic parallel manner. At
some point, when the system enters some configuration β from Cstop (hence Cstop

is satisfied), we stop incrementing t, and the value of t represents the output of
the computation3. If the system never reaches a configuration in Cstart or in
Cstop, then we consider the computation unsuccessful, no output is associated
with it. The set of all such t’s (computed as described) is denoted by N(Π).
The family of all sets N(Π) computed by systems Π of degree at most m ≥ 1,
using symport rules of weight at most p and antiport rules of weight at most
q, is denoted by NTPm(symp, antiq) (we use here similar notations as the ones
from [11] and [2]).

We emphasize the fact that in the definition of Π we assume that Cstart and
Cstop are regular. Other, more restrictive, cases can be of interest but we do not
discuss them here.

Details about P systems with symport/antiport rules can be found in [11];
a complete formalization of the syntax and the semantics of these systems is
provided in [13] where reachability of symport/antiport configurations was dis-
cussed.

3 Register Machines and Counter Automata

In the proofs from the next sections we will use register machines and counter
automata as devices characterizing NRE, hence the Turing computability.

Informally speaking, a register machine consists of a specified number of
registers (counters) which can hold any natural number, and which are handled
according to a program consisting of labeled instructions; the registers can be
increased or decreased by 1 – the decreasing being possible only if a register
holds a number greater than or equal to 1 (we say that it is non-empty) –, and
checked whether they are non-empty.

Formally, a (non-deterministic) register machine is a device M = (m, B, l0,
lh, R), where m ≥ 1 is the number of counters, B is the (finite) set of instruction
labels, l0 is the initial label, lh is the halting label, and R is the finite set of
instructions labeled (hence uniquely identified) by elements from B (R is also
called the program of the machine). The labeled instructions are of the following
forms:

– l1 : (ADD(r), l2, l3), 1 ≤ r ≤ m (increment the value of the register r and
then jump non-deterministically to one of the instructions with labels l2, l3),

3 By convention, in the case when a configuration α is reached that satisfies both
Cstart and Cstop, then we consider that the system has computed the value 0.



P Systems with Symport/Antiport and Time 433

– l1 : (SUB(r), l2, l3), 1 ≤ r ≤ m (if register r is not empty, then subtract 1
from it and go to the instruction with label l2, otherwise go to the instruction
with label l3),

– lh : HALT (the halt instruction, which can only have the label lh).

A register machine generates a natural number in the following manner: we
start computing with all m registers being empty, with the instruction labeled
by l0; if the computation reaches the instruction lh : HALT (we say that it halts),
then the values of register 1 is the number generated by the computation. The
set of numbers computed by M in this way is denoted by N(M).

We recall also the definition of the counter automaton; for more details we
refer the interested to the literature [10]. Such a device is a construct M =
(m, Q, q0, qf , P ), where d is the number of counters, Q = {q0, . . . , qf} is the set
of states of the machine, q0 is the start state while qf is the final state and P is
the set of instructions, of three types:

– (p → q, c+) with p, q ∈ Q and c a counter. This instruction will increment
the value of the register c and move from state p in state q.

– (p → q, c−) with p, q ∈ Q and c a counter. The instruction tries to decrement
the value of the counter c; if it was originally greater than zero, then it is
decremented and M moves to the state q, otherwise (if the value stored in
c is zero) the computation is stopped and the machine does not produce
output.

– (p → q, c = 0) with p, q ∈ Q and c a counter. The instruction tests the
value of the counter c; if it is zero, then M moves to state q, otherwise the
computation stops and the machine does not produce an output.

It is known (see [10]) that non-deterministic register machines and counter
automata generate exactly the family NRE, of Turing computable sets of num-
bers.

4 Universality Results for Timed P Systems Having Only
one Membrane

The first result given here is related to the results obtained in [2] and [6] where
it is proved that systems using only one membrane and symport rules of size
3 are universal. We need to mention that in our setup (by using the time as
the output of the computation) we are able to generate all the subsets of NRE
including the ones containing the values from 0 to 7, which is not the case of
the aforementioned results where there are some “garbage” symbols left in the
output region. Another remark that should be made is that rather than using
the more complicated notion of conflicting counters in a register machine, we use
here a proof which is easier to understand and, implicitly, easier to implement.

Theorem 1. P systems with time are universal for one membrane and symport
of length 3 even when no antiport is used: NRE = NTP1(sym3, anti0)



434 H. Nagda, A. Păun, and A. Rodŕıguez-Patón

Proof. We consider a register machine M = (m, B, l0, lh, R) and we construct
the system

Π = (O, [
1

]
1
, w1, E, R1, Cstart, Cstop)

with the following components

O = {ar | 1 ≤ r ≤ m} ∪ {Pl, P
′

l , P
′′

l , Ql, Q
′

l, Xl, X
′

l , X
′′

l , l | l ∈ B} ∪ {b, t},

w1 = l0P1 . . . PlQ1 . . . QlX1 . . . XlX
′′

1
. . .X ′′

l b2,

E = {ar | 1 ≤ r ≤ m} ∪ {P ′

l , P
′′

l , Q′

l, X
′

l , l | l ∈ B} ∪ {t},

Cstart = {b2t2w1 | w1 ∈ (O − {b, t})∗}, in other words, b and t appear exactly

two times, and the rest of the symbols can appear in any numbers.

Cstop = {tiw2 | i ≥ 1, w2 ∈ (O − {a1})
∗}, in this case we have that t appears at

least once, while a1 does not appear in the region.

and the following rules in R1:

1. For an ADD instruction l1 : (ADD(r), l2, l3) ∈ R, we consider the rules

(Pl1 l1, out), (Pl1 l2ar, in), (Pl1 l3ar, in).

We simulate the work of the ADD instruction in two steps. First we send
out the current instruction label together with the marker Pl1 that will
come back in the membrane with two other objects, a copy of ar so that
the register r is incremented and also the new instruction label. To simulate
the non-deterministic behavior of these machines we have two symport rules
that do the same job, the only difference being the next instruction label
being brought back in the system. It is clear that the simulation of the ADD
instruction is performed correctly.

2. For a SUB instruction l1 : (SUB(r), l2, l3) ∈ R we consider the following rules:

(Pl1 l1, out), (Pl1P
′

l1
P ′′

l1
, in), (P ′

l1
Ql1 , out), (P ′′

l1
Xl1ar, out), (Ql1Q

′

l1
, in),

(Xl1X
′

l1
l2, in), (Q′

l1
P ′′

l1
X ′′

l1
, out), (Q′

l1
X ′

l1
, out), (X ′′

l1
l3, in).

We simulate the work of the SUB instruction in several steps (5 if the register
is not empty and 6 if it is empty). We first send out the current label with
its corresponding P marker by the rule (Pl1 l1, out). At the next step the
symbol P brings in two more symbols that keep track of the instruction
being simulated with theirs indices: (Pl1P

′

l1
P ′′

l1
, in), P ′ is working as a timer

while P ′′ is checking whether the register is empty or not. If the register is
not empty, then P ′′ will exit decreasing the register and taking at the same
time another marker to the outside to help identify the correct case later:
(P ′′

l1
Xl1ar, out). At the next stage X will return with yet another marker

and the next instruction label to be brought in (in this case l2 as the register
was not empty), (Xl1X

′

l1
l2, in). The work is finished in this case by the rule

(Q′

l1
X ′

l1
, out).

If the register is empty, we perform the same initial steps, sending P and
the current instruction label out, P returns with P ′ and P ′′; this time P ′′

cannot exit the membrane at the next step since the register is empty, but P ′



P Systems with Symport/Antiport and Time 435

is exiting together with Q, then Q returns with Q′. At the next step we have
the “branching point”: rather than exiting with X ′ (which will be present in
the membrane in the case when the register was not empty), Q′ exits with
P ′′ and X ′′. If X ′′ exits, that means that the register was empty, thus when
X ′′ returns in the system, it returns with the label of the next instruction
to be simulated as l3.

3. The terminating/counting work is done by the rules:

(lhb2, out), (bt, in), (bta1, out).

It is clear that at the end of the simulation, if the register machine has
reached the final state, we will also have the halting instruction symbol in
the system membrane. At that time we will have the computed value encoded
as the multiplicity of the object a1 that is associated with the output register.
We will also have in the system the label of the halting instruction, lh, thus
the rule (lhb2, out) can be applied only when the simulation was performed
correctly. At the next step, the two b-s return with two copies of t, satisfying
the Cstart configuration. One can note that if there are no copies of a1 in the
membrane, then also the configuration Cstop is satisfied at the same time,
thus our system would compute the value 0 in that case. For any even value
encoded in the multiplicity of a1 it will take exactly half that number of
steps for the two copies of the pair bt to push the a1-s out of the membrane
and again the same amount to return to the membrane.
Let us give a small example: for the value 4, the first step 2 copies of a1 are
pushed out, and at the next step the symbols b2t2 return in the membrane;
in two more steps we will have 0 copies of a1 and at least one copy of t, so
the whole process took the correct 4 steps to complete.
For an odd number we perform the same work, with the exception of the last
step, when there is only one copy of a1 in the membrane. At that moment,
only one bt can exit, leaving the second one in the membrane, satisfying the
Cstop condition at the correct time. ut

In the following we recall a proof from [8] due to its relevance to the current
paper. The best known result for “standard” symport/antiport P systems in this
setting is N1RE = N1OP1(sym0, anti2), thus the following result improves the
best known result for symport/antiport systems by being able to generate sets
of numbers containing also the values 0 and 1. Another observation is that the
Cstart, Cstop configuration are in this case quite simple. We call them having
minimal restrictions on multiplicities; we mean by this the fact that for each
object and each membrane, the Cstart, Cstop rules will impose either a fixed
multiplicity or not impose any restrictions for the object.

Theorem 2. Using minimal restrictions on the multiplicities of the objects for
the Cstart, Cstop rules we have NRE = NTP1(sym0, anti2).

Proof. To prove the theorem we follow the constructions from the literature for
the “standard” symport/antiport P systems, this time using counter automata.
In the initial configuration, the unique membrane contains the start state as



436 H. Nagda, A. Păun, and A. Rodŕıguez-Patón

its only object. The work of the counter automaton can be simulated using the
antiport rules in the following way.

For a rule (p → q, λ) ∈ R we will have in our timed P system the rule
(q, in; p, out); for an increment instruction (p → q, i+) on the counter ci we will
add the antiport rule (qci, in; p, out) to R1. The decrement instruction can only
be applied if the counter is non zero: (p → q, i−) is simulated by (q, in; pci, out).
Finally, (p → q, i = 0) is simulated by the rules (q′i, in; p, out); (∞, in; ici, out),
(q′′, in; q′, out), and (q, in; q′′i, out) in three steps: first we replace p by q′ and
i, then i checks whether the register i is empty or not; if nonempty, the spe-
cial marker ∞ is brought in and the computation cannot continue; in the case
when the register was empty the computation can continue by expelling the two
symbols q′′ and i together to bring in the next state q.

It is clear now that the register machine is simulated in this way only by using
antiport rules of weight4 2. When the final state appears as the current state
of the simulation it is time to start “counting” the result. We define Cstart =
{wf | w ∈ (O−{f,∞})∗}. The rule (f, in; fc0, out) will expel one symbol c0 at a
time, thus if we define Cstop = {fw′ | w′ ∈ (O −{f, c0})∗}, we will have exactly
i steps between Cstart and Cstop, where i is the multiplicity of the symbol c0

(i.e., the contents of the output register) in the system. Following the previous
discussion the equality NRE = NTP1(sym0, anti2) was shown, which completes
the proof. ut

5 Universality Results for Timed P Systems Having Two
Membranes

In this section we will provide two dual results with the ones presented in [1], [2]
when considering systems with two membranes. It is worth noting that in [1] the
authors use and intersection with a finite alphabet when defining the result of
a computation. The best result from [2] is N3RE = N3OP2(sym1, anti1). Here
we improve this result in the sense that we generate also the sets of numbers
containing the values 0 through 3. We will give in the following theorem the
Cstart/Cstop configurations in the form <multiset for membrane 1>$<multiset
for membrane 2> described by regular languages as defined in the second section
of the paper; in the first two proofs we showed universality of a single region,
thus the symbol $ was not used.

Theorem 3. NRE = NTP2(sym1, anti1).

Proof. We will follow the construction from [1] and note the changes made. For
a detailed explanation of the work of the system we refer the interested reader
to [1].

4 The result can be strengthened in the following way: the construction works even if
we only use antiport rules of dimensions (1, 2) or (2, 1) by adding to the only two
rules of dimension (1, 1) some padding symbols. For example the rule (q′′, in; q′, out)
can be padded with the extra symbol P in this way (q′′P, in; q′, out).



P Systems with Symport/Antiport and Time 437

Let us consider a counter automaton M = (m, Q, q0, qf , P ) which starts with
empty counters and has n instructions in the set P .

We construct the P system Π = (O, [
1
[
2

]
2
]
1
, w1, w2, E, R1, R2, Cstart, Cstop)

with the following components

O = E ∪ {bj , b
′

j | 1 ≤ j ≤ n} ∪ {#, F, I},

w1 = q0IF##,

w2 = b1b2 . . . bnb′1b
′

2 . . . b′ndd,

E = Q ∪ {cr | 1 ≤ r ≤ m} ∪ {aj , a
′

j , a
′′

j | 1 ≤ j ≤ n} ∪ {z},

Cstart = {d#2w1$w2 | w1 ∈ (O − {d, #})∗, w2 ∈ (O − {d})∗},

Cstop = {zw3$w4 | w3 ∈ O∗, w4 ∈ (O − {c1})
∗}.

The definition of Cstart means that for starting to count we need to reach a state
when exactly one copy of d and two copies of # are present in membrane 1, at
the same time as no copy of d is present in membrane 2. At the same time, Cstop

is only satisfied when at least one copy of the symbol z is present in membrane
1 and no copies of c1 appears in membrane 2.

Let us now define the rules from R1 and R2:

R1 = Rini
1

∪ Rsim
1

∪ Rtimer
1

, and

R2 = Rini
2 ∪ Rsim

2 ∪ Rtimer
2 , where

Rini
1

= {(I, out; ck, in) | 1 ≤ k ≤ m} ∪ {(I, in)},

Rini
2 = ∅,

Rsim
1

= {(qi, out; aj , in), (a′′

j , out; ql, in) | (j : qi → ql, .) ∈ P}

∪ {(bj , out; a′

j , in), (aj , out; bj , in), (#, out; bj , in) | 1 ≤ j ≤ n}

∪ {(a′

j , out; a′′

j , in) | where j is the label of an increment or decrement

instruction} ∪ {(#, out; #, in)}

∪ {(b′j , out; a′′

j , in), (a′

j , out; b′j , in) | (j : qi → ql, k = 0) ∈ P}

∪ {(#, out; b′j , in) | (j : qi → ql, k = 0) ∈ P}

Rsim
2 = {(bj , out; aj , in) | 1 ≤ j ≤ n}

∪ {(aj , out; ck, in), (a′

j , in) | (j : qi → ql, k+) ∈ P}

∪ {(a′

j , out; bj , in) | j labels an increment or decrement instruction}

∪ {(aj , out) | j labels a decrement or test with 0 instruction}

∪ {(ck, out; a′

j , in) | (j : qi → ql, .) ∈ P}

∪ {(b′j , out; bj , in), (b′j , in) | (j : qi → ql, k = 0) ∈ P},

Rtimer
1

= {(d, out; z, in)},

Rtimer
2 = {(d, out; qf , in), (qf , out; F, in), (c1, out; z, in), (z, out)}.

The simulation of the counter automaton is done in phases. The rules from
the ini phase bring in membrane 1 an arbitrary number of objects ci for any
register i. This helps with the simulation of the increment instruction in the



438 H. Nagda, A. Păun, and A. Rodŕıguez-Patón

automaton. The rules in the sim group perform the actual simulation of the
different instructions in the automaton (increment, decrement, test for 0). We
refer the interested reader to [1] for the details of the construction and the
proof of correctness. We change the construction in the finishing part of the
simulation to match the output based on the time that passes between two
configurations. For this we note that at the start of each simulation step we
have a symbol codifying the current state in the automaton qi in membrane
1, whereas membrane 2 holds the current values of the counters codified by
multiplicities of the symbols cj .

After a successful simulation, we will reach a state when qf is in membrane
1 and some number of c1 objects that are present in membrane 2 codify the
output of the system. At this moment we can use the rules from the set timer.
We will give step-by-step explanations for this phase.

At step 1 qf is in membrane 1 and dd in membrane 2. By using the rule
(d, out; qf , in) we will now have d in membrane 1 and dqf in membrane 2. At
the next step d from membrane 1 is replaced by a z using the rule (d, out; z, in),
and at the same time qf returns in membrane 1 by the rule (qf , out; F, in). At
the next step qf will remove the second d from membrane 2, thus satisfying the
Cstart condition. There are two cases: a) the output register was empty and b)
the output register is not empty.

In the case a) we have the following configuration: in membrane 1 we have
zd and in membrane 2 we have qfF and no copies of c1; this configuration
that satisfied Cstart will satisfy also Cstop, thus the value computed is correctly
reported as 0.

Case b) if there was at least on copy of c1 in membrane 2, then the rule
(c1, out; z, in) is applicable, so now membrane 1 has d and membrane 2 has
zqfF , and this satisfies Cstart. At the next moment the symbol d will be replaced
by a second z in membrane 1, while the first z returns to membrane 1 by the
rule (z, out). If the value of the output counter was 1, then there are no more
copies of c1 in membrane 2, thus the configuration satisfies at this step Cstop,
thus correctly computing the value 1. If the register stored a value more than 2,
then the computation continues in a homogenous fashion from now on: the two
copies of z will expel each a copy of the c1 marker and at the next step return to
membrane 1. If the amount of objects c1 was odd, then the computation finishes
with the two symbols z in membrane 1 and no symbols c1 in membrane 2, thus
reaching the Cstop in a correct amount of time. On the other hand, if the output
of the computation was an even value, then one of the z symbols will be swapped
with the last c1, while the second z will remain in membrane 1, making the Cstop

satisfiable, thus computing also in this case the correct number of steps. This
concludes the proof. ut

We will now proceed to prove the last result of the paper which still deals with
universality of timed symport/antiport P systems. We prove that two membranes
and symport of size 2 are enough for generating all the NRE sets. The best
result for the case of symport/antiport systems with output in an elementary
membrane is given in [2] where the authors show that such systems with two



P Systems with Symport/Antiport and Time 439

membranes and symport of size 2 are universal, but cannot generate sets of
numbers containing the values 0 through 6. In the case of systems based on time,
we match the universality result of systems with two membranes and symport
of size two, but we are also able to generate the sets of numbers containing the
values 0 through 6.

Theorem 4. NRE = NTP2(sym2, anti0).

Proof. We will follow again the construction from [1] and note the changes made
to it.

Let us consider as in the proof of Theorem 3 a counter automaton M =
(m, Q, q0, qf , P ) which starts with empty counters and has n instructions. We
construct the P system Π = (O, [

1
[
2

]
2
]
1
, w1, w2, E, R1, R2, Cstart, Cstop) with

the following components:

O = E ∪ Q ∪ {bj , gj | 1 ≤ j ≤ n} ∪ {g′

j | 1 ≤ j ≤ n − 1} ∪ {#, $, F, y},

w1 = q0a1F$b1b2 . . . bn,

w2 = #q1q2 . . . qfg1g2 . . . gng′
1
g′
2
. . . g′n−1

yy,

E = {cr | 1 ≤ r ≤ m} ∪ {aj , a
′

j , dj , d
′

j | 1 ≤ j ≤ n},

Cstart = {y2w1$#w2 | w1 ∈ (O − {y})∗, w2 ∈ (O − {#})∗},

Cstop = {yw3$w4 | w3 ∈ (O − {c1})
∗, w4 ∈ O∗}.

The rules from R1 and R2 are as follows:

R1 = Rsim
1 , and

R2 = Rsim
2

∪ Rtimer
2

, where

Rsim
1 = {(qiaj , in) | (j : qi → ql, .) ∈ P}

∪ {(bjgj , out) | j is the label of a increment or zero check

∪ {(ckbj , in) | (j : qi → ql, k+) ∈ P, qi, ql ∈ Q, 1 ≤ k ≤ m}

∪ {(ckgj , out) | (j : qi → ql, k−) ∈ P, qi, ql ∈ Q, 1 ≤ k ≤ m}

∪ {(a′

jgj , in) | 1 ≤ j ≤ n − 1} ∪ {(#, out), (#, in)}

∪ {(djbj , in), (djck, out), (a′

jg
′

j , out) | (j : p → q, k = 0) ∈ P}

∪ {(d′jg
′

j , in), (d′j , out) | (j : p → q, k = 0) ∈ P}

∪ {(a′

jql, out) | (j : qi → ql, k+) ∈ P or (j : qi → ql, k−) ∈ P}

∪ {(djql, out) | (j : qi → ql, k = 0) ∈ P, 1 ≤ k ≤ m},

Rsim
2 = {(ajbj , in), (bjgj , out), (a′

jgj , in) | 1 ≤ j ≤ n − 1, (j : qi → ql, .) ∈ P}

∪ {(qi, in) | qi ∈ Q} ∪ {(a′

j$, in) | 1 ≤ j ≤ n} ∪ {(#$, out)}

∪ {(a′

jql, out) | (j : qi → ql, k+) ∈ P or (j : qi → ql, k−) ∈ P}

∪ {(a′

jg
′

j , out), (d′jg
′

j , in), (djql, out) |

(j : qi → ql, k = 0) ∈ P, 1 ≤ k ≤ m}

Rtimer
2

= {(qfF, in), (qf y, out), (Fy, out), (yc1, in)}.



440 H. Nagda, A. Păun, and A. Rodŕıguez-Patón

The simulation of the register machine is done by the rules in the sim groups.
We refer the interested reader to [1] for the details of the construction and the
proof of correctness. We note that the construction from [1] was changed for
our purposes, thus the rules from the group start as they were defined in the
Theorem 2 in [1] are no longer needed since we do not need the “safety net” of
the computation running forever (done by using the symbol #2) if the simulation
is blocked. This is due to the flexibility of the Cstart/Cstop configurations. We
note that the construction is simulating the work of the counter automaton
in membrane 1 and use membrane 2 as a filtering mechanism. Membrane 1
contains both the values of the counters (codified as multiplicities of objects
ci), the current state of the automaton (codified as an object qj) and the next
instruction to be executed (codified as a symbol ak). At the end of a successful
simulation we will have qf in membrane 1, some number of objects c1 codifying
the output of the simulation and # in membrane 2 (if # has reached membrane
1, then the simulation was not correct). The rules in the timer group can only
be applied after the simulation was completed successfully, thus the symbol qf

appears in membrane 1. At that time qf together with F enter membrane 2 by
rule (qf F, in) ∈ Rtimer

2
, where they are able to “pair” with a copy of y each and

exit to membrane 1, by using the rules (qf y, out), (Fy, out) ∈ Rtimer
2 . At this

moment we will have again qf and F in membrane 1, and also y2 in the same
membrane. It is easy to see that the Cstart is satisfied now since the two carrier
symbols y are in membrane 1. If the value in register 1 is zero, then the Cstop

is also valid producing the correct output for this case. If the value computed
by the automaton is non-zero, then the objects y will start moving copies of c1

in membrane 2, and return to membrane 1 using the symbols qf and F . This
is done up until all the symbols c1 have been moved in region 2. We have two
cases for this process: a) the number computed by the automaton is even or b)
the number computed is odd.

In the case a) one can notice that it takes two steps for a symbol y to return
to membrane 1, but since there are exactly two such symbols in the system,
for every two steps of the system, two c1-s are moved to region 2 and the two y
symbols return to membrane 1. Thus in the same amount of steps as the number
computed, the configuration Cstop becomes satisfied – to this aim, it needs at
least one copy of y present in membrane 1, so we need in this case to wait until
both y-s return to membrane 1 after the c1-s are depleted. In the case b) one
can note that in some even number of steps, 2s for example, exactly 2s copies of
c1 are moved to region 2 and the y-s return to membrane 1, thus without loss of
generality we can assume that in 2s steps we only have one more copy of c1 in
membrane 1. In that moment, one of the y-s will move the c1 to region 2, while
the other copy of y cannot move, thus at the next step we reach a configuration
from Cstop, and the system outputs correctly the value 2s + 1. ut

In this way we matched/improved all the four best results known for the
symport/aniport P systems. This shows that considering the time as the support
for outputting the result for these systems is both powerful and, as described in
the introduction, motivated from the bio-molecular tools.



P Systems with Symport/Antiport and Time 441

6 Final Remarks

For the newly introduced timed P systems we improved or matched the four
best known results for “regular” symport/antiport P systems. It is worth noting
that the new feature of outputting the result using time is more flexible than the
previously considered methods, thus the previous results could be even improved
by using completely different techniques that take advantage of the flexibility of
the time as a framework of outputting the result of a computation. For example
in the new framework we no longer have the (rather strong) requirement that
the computation should halt, only to reach a configuration from Cstart and then
one from Cstop. We conjecture that this new definition could prove useful also
in conjunction with classes of symport/antiport systems that using the original
definition could only generate finite sets (e.g., generate some non-finite family of
numbers, etc.).

Acknowledgments

A. Păun gratefully acknowledges the support in part by LA BoR RSC grant
LEQSF (2004-07)-RD-A-23 and NSF Grants IMR-0414903 and CCF-0523572.

References

1. A. Alhazov, R. Freund, Yu. Rogozhin, Some Optimal Results on Symport/Antiport
P Systems with Minimal Cooperation, M.A. Gutiérrez-Naranjo et al. (eds.), Cel-
lular Computing (Complexity Aspects), ESF PESC Exploratory Workshop, Fénix
Editora, Sevilla (2005), 23–36.

2. A. Alhazov, R. Freund, Yu. Rogozhin, Computational Power of Symport / An-
tiport: History, Advances and Open Problems, R. Freund et al. (eds.), Membrane
Computing, International Workshop, WMC 2005, Vienna (2005), revised papers,
Lecture Notes in Computer Science 3850, Springer (2006), 1–30.

3. F. Bernardini, A. Păun, Universality of Minimal Symport/Antiport: Five Mem-
branes Suffice, WMC03 revised papers in Lecture Notes in Computer Science 2933,
Springer (2004), 43–54.

4. M. Cavaliere, R. Freund, Gh. Păun, Event–Related Outputs of Computations in
P Systems, M.A. Gutiérrez-Naranjo et al. (eds.), Cellular Computing (Complexity
Aspects), ESF PESC Exploratory Workshop, Fénix Editora, Sevilla (2005), 107–
122.

5. R. Freund, A. Păun, Membrane Systems with Symport/Antiport: Universality Re-
sults, in Membrane Computing. Intern. Workshop WMC-CdeA2002, Revised Pa-

pers (Gh. Păun, G. Rozenberg, A. Salomaa, C. Zandron, eds.), Lecture Notes in

Computer Science, 2597, Springer-Verlag, Berlin (2003), 270–287.
6. P. Frisco, J.H. Hogeboom, P systems with Symport/Antiport Simulating Counter

Automata, Acta Informatica, 41 (2004), 145–170.
7. P. Frisco, S. Ji, Towards a hierarchy of conformon-P systems, Membrane Com-

puting. International Workshop, WMC-CdeA 2002, Curtea de Arges, Romania,

August 2002, Revised Papers (Gh. Păun, G. Rozenberg, A. Salomaa, C. Zandron,
eds.), Springer, Berlin, 2003, 302–318,



442 H. Nagda, A. Păun, and A. Rodŕıguez-Patón

8. O.H. Ibarra, A. Păun, Counting Time in Computing with Cells, Proceedings of
DNA11 conference, June 6-9, 2005, London Ontario, Canada, (14 pages).

9. M. Ionescu, Gh. Păun, T. Yokomori, Spiking Neural P Systems, Fundamenta In-

formaticae, 71, 2-3 (2006), 279–308.
10. M.L. Minsky, Recursive Unsolvability of Post’s Problem of “Tag” and Other Topics

in Theory of Turing Machines, Annals of Mathematics, 74 (1961), 437–455.
11. A. Păun, Gh. Păun, The Power of Communication: P Systems with Sym-

port/Antiport, New Generation Computing, 20, 3 (2002) 295–306.
12. Gh. Păun, Further Twenty-six Open Problems in Membrane Computing, the Third

Brainstorming Meeting on Membrane Computing, Sevilla, Spain, February 2005.
13. Gh. Păun, M.J. Pérez-Jiménez, F. Sancho-Caparrini, On the Reachability Problem

for P Systems with Symport/Antiport, Proc. Automata and Formal Languages

Conf., Debrecen, Hungary, 2002.
14. Gh. Păun, M.J. Pérez-Jiménez, G. Rozenberg, Spike Trains in Spiking Neural P

Systems, International Journal of Foundations of Computer Science, in press.
15. G. Rozenberg, A. Salomaa, eds., Handbook of Formal Languages, 3 volumes,

Springer-Verlag, Berlin, 1997.


