
A Membrane Algorithm for the

Min Storage Problem

Alberto Leporati, Dario Pagani ?

Dipartimento di Informatica, Sistemistica e Comunicazione
Università degli Studi di Milano – Bicocca

Via Bicocca degli Arcimboldi 8, 20126 Milano, Italy

e-mail: leporati@disco.unimib.it

dario.pagani@gmail.com

Abstract. Min Storage is an NP–hard optimization problem that
arises in a natural way when one considers computations in which the
amount of energy provided with the input values is preserved during the
computation. In this paper we propose a polynomial time membrane al-
gorithm that computes approximate solutions to the instances of Min

Storage, and we study its behavior on (almost) uniformly randomly
chosen instances. Moreover, we compare the (estimated) coefficient of
approximation of this algorithm with the ones obtained from several
other polynomial time heuristics. The result of this comparison indicates
the superiority of the membrane algorithm with respect to many other
traditional approximation techniques.

1 Preliminaries

Membrane systems (also known as P systems) were introduced in [7] as a new
class of distributed and parallel computing devices, inspired by the structure and
functioning of living cells. The basic model consists of a hierarchical structure
composed by several membranes, embedded into a main membrane called the
skin. Membranes divide the Euclidean space into regions, that contain some
objects (represented by symbols of an alphabet) and evolution rules. Using these
rules, the objects may evolve and/or move from a region to a neighboring one.
The rules are applied in a nondeterministic and maximally parallel way: all the
objects that may evolve are forced to evolve. A computation starts from an
initial configuration of the system and terminates when no evolution rule can be
applied. The result of a computation is the multiset of objects contained into an
output membrane or emitted from the skin of the system.

In what follows we assume the reader is already familiar with the basic no-
tions and the terminology underlying P systems. For details, and a systematic
introduction on the subject, we refer the reader to [9]. The latest information
about P systems can be found in [11].

? This research was supported by the European Research Training Network Segravis.

398 A. Leporati and D. Pagani

In [6], Nishida has proposed a new type of approximation algorithms for
optimization problems, named membrane algorithms. A membrane algorithm
operates on a particular type of P system, which is a linear collection of sepa-
rated regions determined by nested membranes. Each region contains a number
of candidate solutions, and a local optimization algorithm. At each computation
step, the local optimization algorithms which occur in the system are concur-
rently executed on the currently available solutions. New candidate solutions are
produced in each region as a result; the best and the worst of them are sent to the
immediately inner and immediately outer region, respectively. By repeating this
process, a good solution will likely appear in the innermost region after a suitable
number of computation steps. The algorithm terminates after a prefixed number
of iterations has been performed, or some halting condition is verified (such as,
for example, the solution(s) of the innermost region is (resp., are) not changed
for a predetermined number of steps). In [6], a membrane algorithm which com-
putes approximate solutions to the instances of the Travelling Salesman Problem
(TSP) is described; moreover, the results of some computer experiments are pre-
sented, showing that this algorithm is indeed a good approximation heuristic for
TSP.

In this paper we elaborate after Nishida’s membrane algorithm for TSP,
and we propose a new membrane algorithm for another NP–hard optimization
problem, Min Storage [5]. This problem arises in a natural way if we consider
conservative computations, that is, computations in which the amount of energy
associated with the input values is first preserved during the computation of the
output values, and then it is completely returned with them. In [5], it has been
proved that Min Storage is strongly NP–hard, and that it is 2–approximable.
This means that there exists a polynomial time algorithm that, for every instance
E of Min Storage, returns a feasible solution sol(E) which is at most the
double of the optimal solution opt(E). In this paper we present the results of
some computer experiments in which the new membrane algorithm for Min

Storage is compared with several “classical” polynomial time heuristics. As we
will see, the membrane algorithm performs considerably well (with an estimated
coefficient of approximation which is well under 2), especially when the number
of membranes and the number of iterations in the algorithm are sufficiently large
(where the term “sufficiently” has been experimentally determined).

The paper is organized as follows. In section 2 we recall the definition of Min

Storage and some of its properties. In section 3 we present a membrane algo-
rithm to solve the problem. Precisely, we propose two versions: MA4MS (Mem-
brane Algorithm for Min Storage) which uses a particular kind of crossover
and mutation to produce new candidate solutions, and MA4MS LS, which uses
only a simple local search. In section 4 we discuss a method that allows to gener-
ate random instances of Min Storage with an (almost) uniform distribution of
probability. Section 5 illustrates the results of some computer experiments which
have been performed on MA4MS and MA4MS LS. As we will see, these results
led us to abandon MA4MS and to use only the version with the local search for
further investigation. In section 6 we describe several “classical” polynomial time

A Membrane Algorithm for the Min Storage Problem 399

heuristics for Min Storage. Section 7 illustrates the results of other computer
experiments, which have been performed to compare the performance (in terms
of average coefficient of approximation) of our membrane algorithm against the
above classical heuristics. Section 8 concludes the paper.

2 The Problem

Let us first introduce the problem we want to solve. As stated in the Intro-
duction, this problem comes from the study of conservative (that is, energy

preserving) computations. We refer the interested reader to [5] for two possible
interpretations of the problem in this setting.

Let E = 〈e1, e2, . . . , ek〉 be a finite sequence of integer numbers. For a fixed

i ∈ {1, 2, . . . , k}, the i-th prefix sum of E is the value
∑i

j=1 ej . Let C be a positive
integer; we say that E is C–feasible if for each i ∈ {1, 2, . . . , k} the i-th prefix
sum of E is in the closed interval [0, C].

Problem 1. Name: ConsComp.

– Instance: a set E = {e1, e2, . . . , ek} of integer numbers such that e1 + e2 +
. . . + ek = 0, and an integer number C > 0.

– Question: is there a permutation π ∈ Sk (the symmetric group of order k)
such that the sequence eπ(1), eπ(2), . . . , eπ(k) is C–feasible? ut

The fact that the resulting sequence eπ(1), eπ(2), . . . , eπ(k) is C–feasible can
be explicitly written as:

0 ≤
i

∑

j=1

eπ(j) ≤ C ∀ i ∈ {1, 2, . . . , k}

The following theorem, which has been proved in [5], shows that it is very
unlikely that a polynomial time algorithm exists that correctly classifies every
instance of ConsComp as positive or negative.

Theorem 1. ConsComp is NP–complete.

The ConsComp problem naturally leads to the formulation of the following
optimization problem.

Problem 2. Name: Min Storage.

– Instance: a set E = {e1, e2, . . . , ek} of integer numbers such that e1 + e2 +
. . . + ek = 0.

– Solution: a permutation π ∈ Sk such that
∑i

j=1 eπ(j) ≥ 0 for each i ∈
{1, 2, . . . , k}.

– Measure: max
1≤i≤k

∑i

j=1 eπ(j). ut

400 A. Leporati and D. Pagani

Informally, the output of Min Storage is the minimum value of C for which
there exists a permutation π ∈ Sk such that the sequence eπ(1), eπ(2), . . . , eπ(k)

is C–feasible. Notice that a trivial upper bound for the value of C is:

∑

i∈{1,2,...,k} : ei>0

ei =
1

2

k
∑

i=1

|ei|

while a trivial lower bound is max1≤i≤k |ei|.
It is immediately seen that Min Storage is in the class NPO [1, page 27].

In fact, checking whether some given integers e1, e2, . . . , ek sum up to zero can
be trivially done in polynomial time; each feasible solution has linear length
and besides it can be verified in polynomial time whether a given permutation
π ∈ Sk is a feasible solution; finally, the measure function can be computed
in polynomial time. Since the underlying decision problem ConsComp is NP–
complete, we can immediately conclude that Min Storage is NP–hard [1, page
30]. Just like the ConsComp decision problem, this means that it is very unlikely
that a polynomial time algorithm exists that gives the correct solution to every
instance of Min Storage.

Since the Min Storage problem is NP–hard, a natural question is how
well its optimal solutions can be approximated in polynomial time. Precisely,
we ask ourselves whether there exists a PTAS (Polynomial Time Approximation
Scheme) or even a FPTAS (Fully Polynomial Time Approximation Scheme) for
Min Storage. Concerning these questions, in [5] it has been proved that Con-

sComp is NP–complete in the strong sense, by showing a polynomial reduction
from 3–Partition [2, page 224], a well known strongly NP–complete problem.
As a consequence, Min Storage is strongly NP–hard, and thus it doesn’t ad-
mit a FPTAS [1, page 116]. The next natural question is whether there exists a
PTAS for Min Storage; this possibility is currently under investigation.

In [5] it has also been proved that the algorithm shown in Figure 1 is a
2–approximation algorithm for Min Storage. The proof derives from the fact
that, denoted by M the value max1≤i≤k |ei|, the variable st (that records the
energy currently stored into the system) assumes values only from the interval
[0, 2M − 1]. The variable max, which contains the value returned at the end
of the computation, records the maximum of the values assumed by st into the
subinterval [M, 2M − 1]. Since the optimal solution cannot be less than M , the
value returned by the algorithm is at most the double of the optimal solution.
A direct inspection of the pseudo–code reveals that the time complexity of the
algorithm is linear with respect to k, the length of the input sequence. Hence,
Min Storage is in the class APX of problems which admit a constant factor
polynomial time approximation algorithm.

3 A Membrane Algorithm for Min Storage

Let us now introduce a membrane algorithm that produces approximate so-
lutions to any instance of Min Storage. As stated in the Introduction, the

A Membrane Algorithm for the Min Storage Problem 401

Fig. 1. Pseudocode of a 2–approximation algorithm for Min Storage

algorithm is based on a structure composed by nested membranes. Each of the
regions determined by the membranes contains a certain number of candidate
solutions, and a local optimization algorithm. Formally, let m be the number of
nested membranes, and let 0 and m − 1 be the innermost and the outermost
regions, respectively. Just like in the membrane algorithm for TSP, proposed
by Nishida in [6], we put one candidate solution in region 0 and two candidate
solutions in the other regions.

Another fundamental component of the system is the transport mechanism,
that allows candidate solutions to move to the immediately inner or to the
immediately outer region. The idea underlying the algorithm is to move good
solutions towards the innermost region, and bad solutions towards the outermost
region. When the computation halts, the best candidate solution produced by
the system is thus contained into the innermost region, which is by definition
the region in which the output is observed at the end of the computation.

A first difficulty in adapting the TSP membrane algorithm proposed by
Nishida to the Min Storage problem is that, differently from TSP, not all
the permutations of the elements E = {e1, e2, . . . , ek} given in the instance give
rise to feasible solutions. This is due to the fact that in a feasible solution π

of Min Storage all prefix sums are non negative; clearly, this property is not
preserved if we exchange two randomly chosen elements of the solution. To over-
come this difficulty, we have slightly modified the measure function associated
with Min Storage as follows:

F (π) =

max
1≤i≤k

i
∑

j=1

eπ(j) if
∑i

j=1 eπ(j) ≥ 0 for all i ∈ {1, . . . , k}
k
∑

i=1

|ei| −NumVPSπ otherwise

where NumVPSπ is the number of non negative (that is, valid) prefix sums
determined by π. In this way, all feasible solutions get a lower measure with
respect to non feasible solutions. Moreover, every permutation can be measured,
and we can also choose what among two non feasible solutions to prefer: the

402 A. Leporati and D. Pagani

one which has the lowest number of negative prefix sums. As an alternative
approach, we could impose to work only with feasible solutions (discarding non
feasible ones when they appear), and adopt the usual measure function for Min

Storage. However, since the probability to generate a non feasible solution is
very high, this approach has been considered infeasible from a computational
point of view.

The structure of the algorithm is analogous to the one proposed by Nishida
for TSP. Given an instance E of Min Storage, the algorithm works as follows:

1. put one random solution in region 0, and two random solutions in every
region from 1 to m− 1;

2. repeat the following steps d times:
(a) in each region, apply the local optimization algorithm to produce new

candidate solutions;
(b) for every region i ∈ {1, 2, . . . , m− 1}, send the best among the solutions

contained in the region (both old and new) to region i − 1 (that is,
towards the interior of the system). Similarly, for all i ∈ {0, 1, . . . , m−2}
send the worst solution of region i to region i + 1;

(c) in each region i ∈ {1, 2, . . . , m − 1}, remove all solutions but the best
two. In region 0, remove all solutions but the best one;

3. return the solution contained in region 0 as the output of the algorithm.

With respect to the membrane algorithm for TSP, we have used different
local optimization algorithms. Precisely, for region 0 we have used a kind of
local search: given a solution π, this operation explores the solutions which can
be found in its neighborhood (which depends upon a specified element of π); if
one of such solutions has a better measure than π, then it substitutes π. Formally,
the neighborhood of π is defined as follows.

Definition 1. Let π ∈ Sk be a candidate solution, and let α ∈ {1, 2, . . . , k}. The

neighborhood Neigh(π, α) of π, with respect to position α, is the set of k − 1
solutions defined as follows:

Neigh(π, α) =
⋃

i6=α

{πi,α}

where πi,α is the solution obtained from π by exchanging the elements in positions

i and α.

The local search in region 0 is thus executed as follows:

LocalSearch4MS(π, α)

Best← π

min← F (π)
for i← 1 to k − 1 do

π′ ← select an element from Neigh(π, α)
if F (π′) < min

A Membrane Algorithm for the Min Storage Problem 403

then min← F (π′)

Best← π′

Neigh(π, α) = Neigh(π, α) \ {π′}
return Best

In order to improve the probability to generate feasible solutions, the position
α with respect to which we build the neighborhood of π is chosen as the first
position for which the corresponding prefix sum is negative; if all prefix sums
are non negative, then α is chosen at random in the set {1, 2, . . . , k}.

In a first version of our membrane algorithm, that we have called MA4MS
(Membrane Algorithm for Min Storage), we have tried to use a kind of crossover

operation between candidate solutions as a local optimization algorithm for re-
gions 1, 2, . . . , m − 1. The idea, very well known in the domain of genetic algo-

rithms, is to start from two solutions A and B, cut them in the same position
and then recombine them as shown on the left of Figure 2. However, if we ap-
ply this operation to permutations, it is very likely that we obtain sequences
in which some elements are missing and some are repeated; that is, in general
we do not obtain two permutations as a result. Hence we have tried to use a
variant of the standard crossover operation, named partially matched crossover

(or PMX, for short) [4]. Just like the standard crossover, PMX operates on two
permutations, say π and π′. This time, however, the two permutations are not
recombined; rather, two “cutpoints” are randomly selected (let us call them l

and r, respectively, with l ≤ r) and then the elements of π are permuted ac-
cording to positions π′(l), π′(l + 1), . . . , π′(r). Similarly, the elements of π′ are
permuted according to positions π(l), π(l + 1), . . . , π(r). As an example, let us
assume that π = 〈2, 3, 1, 7, 4, 6, 5〉, π′ = 〈5, 1, 7, 6, 4, 2, 3〉, l = 2 and r = 5. This
situation is depicted on the right of Figure 2. Now, in both permutations π and
π′ the elements 3 and 1 are exchanged, then the elements 1 and 7 are exchanged,
and so on. The pseudocode of the PMX operation is the following:

PMX(π, π′)

l, r ← random(1, . . . , k)

if l > r then exchange l and r

for i← l to r do

find the position j ∈ {1, 2, . . . , k} such that π(j) = π′(i)

find the position j′ ∈ {1, 2, . . . , k} such that π′(j′) = π(i)

exchange π(i) and π(j)

exchange π′(i) and π′(j′)

return π, π′

Once two new solutions have been generated using the PMX operation, a
“mutation” operation is applied on each of them with the probability p = i

m
,

which is directly proportional to the depth of the region into the system. This
means, in particular, that the mutation is never performed in the innermost

404 A. Leporati and D. Pagani

A left A

left

A left

Aleft

right

rightB B

B

B

right

right

π

π’

l r

2

2

3 1 7 4 6 5

5 1 7 6 4 3

Fig. 2. The standard crossover operation (left) and the first step in partially matched
crossover (right)

region, whereas it is almost always applied in the outermost region. This op-
eration simply chooses two positions in a random way (according to a uniform
probability distribution) and then exchanges the elements in such positions.

As we will see later, we have also considered a second version of the above
membrane algorithm, in which no PMXs and no mutations are performed. In-
stead, LocalSearch4MS is used as the local optimization algorithm in every
membrane of the system. We have called such variant MA4MS LS.

4 Generating Random Instances of Min Storage

We have performed some computer experiments on randomly chosen instances
of Min Storage, in order to study the behavior of our membrane algorithm.
All the random choices made during the experiments were performed according
to the discrete uniform distribution. Hence the first problem we faced was to
generate random instances for Min Storage in a uniform way. Formally, we
can state the problem as follows.

Problem 3. Let e1, e2, . . . , ek be independent variables uniformly distributed over
the set of integers from the interval [−M, M]: how can we extract in a uniform
way those k–tuples for which e1 + e2 + . . . + ek = 0? ut

A possible solution to this problem could be to extract each element ei and to
discard the entire k–tuple if the sum is not zero; however the probability of suc-

cess, Prob
[

∑k
i=1 ei = 0

]

, is fairly small. In order to compute such probability

we observe that the distribution of the sum of k discrete independent uniformly
distributed random variables is a k–th order convolution. Hence, the evaluation
of the probability of success amounts to compute how many k–tuples with el-
ements in [−M, M] whose sum is zero we can build. To the best knowledge of
the authors, this calculation seems to require the examination of an exponen-
tial number of k–tuples, and thus it is not feasible. As a consequence, we can
compute an estimate of the probability of success by approximating the distri-
bution of the random variable Y = e1 +e2 + . . .+ek with an appropriate normal
distribution.

A Membrane Algorithm for the Min Storage Problem 405

First of all, let us compute the mean and variance of each random variable ei.
Since ei is uniformly distributed over the interval [−M, M] of integers, it holds:

E [ei] =
M
∑

x=−M

x · 1

2M + 1
=

1

2M + 1

M
∑

x=−M

x = 0

and

var [ei] = E
[

e2
i

]

− (E [ei])
2 = E

[

e2
i

]

=

M
∑

x=−M

x2 · 1

2M + 1
=

2

2M + 1

M
∑

x=1

x2 =
M(M + 1)

3

For linearity we obtain:

E [Y] =

k
∑

i=1

E [ei] = 0

Since e1, e2, . . . , ek are independent variables, the variance of their sum is the
sum of their variances, hence:

var [Y] =

k
∑

i=1

var [ei] = k · M(M + 1)

3

A direct consequence of the Central Limit theorem is that we can approxi-

mate the distribution of Y with the normal distribution N
(

0, k
M(M+1)

3

)

having

the same mean and variance. In our experiments we have considered k = 100
and M = 106; this means that var [Y] ≈ 1014, and the probability of success is:

Prob [Y = 0] ≈ 6.91 · 10−8

As stated above, this is a very small value. On the other hand, let us notice that
there is a bijective correspondence between the set of all k–tuples whose sum is
zero and the set of all (k−1)–tuples whose sum is in the interval [−M, M]. This
observation suggests that we could extract k− 1 elements in a uniform way and
check whether their sum is in the interval [−M, M]. If this is the case then we

put ek = −∑k−1
i=1 ei, thus producing an instance; otherwise, we discard the entire

(k−1)–tuple and we try with a different set of k−1 elements. Now the probability

of successfully generate an instance is Prob
[

−M ≤∑k−1
i=1 ei ≤M

]

. Once again,

we can approximate the distribution of the random variable Z =
∑k−1

i=1 ei with

the normal distribution N
(

0, (k − 1)M(M+1)
3

)

. Thus, if

φ(x) =
1√
2π

exp

(

− 1

2x2

)

and Φ(x) =

∫ x

−∞

φ(u) du

406 A. Leporati and D. Pagani

Prob[Y]

Y
(k−1)M

M0− M
−(k−1)M

ε

Fig. 3. Gaussian approximation of the distribution of Z =
P

k−1

i=1
ei

are the probability density function and the cumulative distribution function of
the standardized normal distribution N(0, 1), it holds:

Prob

[

−M ≤
k−1
∑

i=1

ei ≤M

]

≈ Φ

(

M

σ

)

− Φ

(

−M

σ

)

= 2Φ

(

M

σ

)

− 1

where σ =
√

(k − 1)M(M+1)
3 . For k = 100 and M = 106 we obtain:

Prob

[

−106 ≤
99
∑

i=1

ei ≤ 106

]

≈ 0.138 (1)

Intuitively, for fixed values of M and k we approximate the real distribution of
Z (that can assume every integer value in the interval [−(k − 1)M, (k − 1)M])
with a normal distribution (see Figure 3), and we consider the portion of the
curve contained into the vertical strip included between −M and M . For growing
values of k, such strip becomes small with respect to the entire curve, and thus
the portion of the curve into the strip tends to become an horizontal segment.
This means that we find k–tuples whose sum is zero with almost a uniform
distribution. We can estimate the error due to the fact that the portion of curve
into the strip is not horizontal by looking at the difference between the higher
and the lower values it assumes in this interval:

ε = Prob

[

k−1
∑

i=1

ei = 0

]

− Prob

[

k−1
∑

i=1

ei = M

]

For k = 100 and M = 106, the error is ε ≈ 1.04 ·10−9. As a consequence, we can
safely assume that our strategy produces k–tuples whose sum is equal to zero
with a uniform probability distribution; moreover, as stated in (1), about 13.8%

A Membrane Algorithm for the Min Storage Problem 407

of the times it will produce one of such k–tuples. A computer experiment has
confirmed this last result.

Before looking at the experiments, let us recall the notion of coefficient of
approximation. Let cA(E) be the value which is returned as a solution by a
heuristic A for the instance E of the Min Storage problem, and let opt(E) be
the optimal solution, that is, the value returned by the brute force algorithm that
examines all possible feasible solutions. Then, the coefficient of approximation

of algorithm A over the instance E is the value appA(E), where

appA(E) =
|cA(E)|
opt(E) (2)

Note that appA(E) is always greater than or equal to 1, and that the closer it is
to 1, the better the approximate solution is. We say that algorithm A has the
guaranteed coefficient of approximation c if appA(E) ≤ c, for every instance E . For
example, Approx Min Storage has a guaranteed coefficient of approximation
equal to 2.

5 First Experiments with MA4MS

We have implemented the membrane algorithm MA4MS in the Java program-
ming language. To simulate the parallel application of local optimization algo-
rithms we have implemented them as threads, with a monitor that allows to
synchronize the exchange of information between the regions of the system.

Then, we have performed some computer experiments to study the behavior
of MA4MS on randomly chosen instances. To measure the performance of the
algorithm we have computed an estimate of its coefficient of approximation (see
also equation (2)), averaged on the number N of instances considered in the
experiment:

appMA4MS =
1

N

N
∑

i=1

Fi(π)

opti

where opti has been put equal to the optimal solution of the i-th instance in
those experiments for which the length of the instances allowed to compute it.
In the experiments for which the length of the instances did not allow to compute
the optimal solution with the brute force approach, we have substituted it with
the theoretical lower bound max1≤i≤k |ei|.

In the first experiment we have tested the behavior of MA4MS by running
10000 tests, each with randomly generated instances of increasing length (10,
20, 50 and 100). The number m of regions and the number d of iterations have
been put equal to 10 and 50, respectively. The results are illustrated in Figure
4 (on the left). As we can see, the average coefficient of approximation grows
together with k, the length of the instances, going well above the value 2 given
by Approx Min Storage. This is probably due to the fact that the partially
matched crossover is not able to differentiate the solutions initially assigned
to the system. Indeed, with PMX, solutions that differ in a small number of

408 A. Leporati and D. Pagani

k appMA4MS Variance

10 1.2052383 0.0433753
20 1.7645406 0.1412564
50 3.0863457 0.6402221
100 4.6576763 1.8045398

k appMA4MS Variance

10 1.0875901 0.0139737
20 1.5258556 0.0582978
50 2.6124590 0.2444580
100 3.9430665 0.5004649

Fig. 4. Results obtained for MA4MS on 10000 tests, with m = 10 and d = 50 (on
the left) and with m = 30 and d = 150 (on the right), for different lengths k of the
instances

positions produce new solutions which are similar. As we can see on the right of
Figure 4, this problem remains even if we raise the parameters m and d to 30
and 150, respectively.

For these reasons, we have abandoned our first version of the membrane al-
gorithm and we have repeated the above experiments with the second version,
MA4MS LS, in which LocalSearch4MS is used as a local optimization algo-
rithm in all regions, instead of PMX and mutations. In Figure 5 (left) we can see
the results of the second experiment described above, with m = 30 and d = 150.

k appMA4MS Variance

10 1.0032719 0.0002333
20 1.0093292 0.0003654
50 1.0600094 0.0045419
100 1.1978124 0.0162296

m d appMA4MS

10 20 2.1003992
30 60 1.4055032
50 100 1.2228035
80 150 1.1003962
150 200 1.1066577
300 500 1.0214561

Fig. 5. Results obtained with MA4MS LS, on: (left) 10000 tests, with m = 30 and
d = 150, for different lengths k of the instances; (right) groups of 10 instances of length
100, and growing values of m and d

It is apparent that MA4MS LS obtains better results, and thus we will use
it in the following to perform some comparisons with some “classical” heuristics
specially crafted for Min Storage. Let us note that, in this new version of the
algorithm, the only “forces” that drive to a good solution are local search and
the transport mechanism, that moves good solutions towards region 0 and bad
solutions towards region m− 1. No other forces (crossover, mutations, etc.) are
involved, and hence it is our opinion that this is a “true” membrane algorithm,
in the original spirit of Membrane Computing.

Some computer experiments have also been performed to see how the average
coefficient of approximation is affected by the number m of regions and the
number d of iterations. Figure 5 (on the right) shows some results obtained on

A Membrane Algorithm for the Min Storage Problem 409

groups of 10 instances, each containing 100 elements, for growing values of m

and d. Notice that d ≥ m, so that a good solution has always the possibility to
reach the innermost region. Figure 6 contains two plots of the average coefficient
of approximation with respect to growing values of d (up) and of m (down). All

Avg.Coeff.Approx

0,9

0,95

1

1,05

1,1

1,15

1,2

1,25

1,3

1,35

1,4

1,45

1,5

50 82 114 146 178 210 242 274 306 338 370 402 434 466 498

Avg.Coeff.Approx

0,95

1

1,05

1,1

1,15

1,2

1,25

1,3

10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Fig. 6. Average coefficients of approximation obtained by letting vary d (up) and m

(down) independently

coefficients have been computed by performing 10 tests with instances of length
100. In the first experiment the value of m has been fixed to 80, and the value of
d has been let vary in the interval [50, 500]; in the second experiment, instead,
the value of d has been fixed to 150 and the value of m has been let vary in the
interval [10, 100].

We have also tried to increase the number of candidate solutions occurring in
each region (but the innermost, which continues to have only one solution). As we
can see in Table 1, the average coefficient of approximation decreases, but only
slightly. Perhaps more interesting was to evaluate the speed of convergence of the
algorithm, with respect to the number of candidate solutions. Table 2 reports
the results obtained with tests of 10 instances of length 100. The second, third
and fourth column contain the number of steps needed (on average) to lower the
average coefficient of approximation below 2, 1.5 and 1.1, respectively. Finally,
in the last column we report the average of the gains obtained during each
iteration of the algorithm. As we can see, when the number of candidate solutions

410 A. Leporati and D. Pagani

Number of solutions appMA4MS Variance

2 1.0609374 0.0022672
3 1.0392002 0.0018685
5 1.0231814 0.0007303
10 1.0145107 0.0005448

Table 1. Results obtained with MA4MS LS, by letting vary the number of candidate
solutions in the regions (but the innermost). Each test contained 100 instances of length
100; m = 30 and d = 160

Num. sol. C.A. < 2 C.A. < 1.5 C.A. < 1.1 Avg. Gain

2 23 50 134 0.5065
3 17 38 111 0.3915
5 20 41 99 0.3355
10 15 37 93 0.2865

Table 2. Speed of convergence of MA4MS LS, with respect to the number of candidate
solutions in the regions

grows the number of steps needed to obtain a good coefficient of approximation
decreases. As a drawback, also the average gain decreases.

6 Some Heuristics for Min Storage

In this section we propose some “classical” polynomial time heuristics for solving
Min Storage. Subsequently, we will run the same tests for both these heuristics
and MA4MS LS, in order to compare the behavior of our membrane algorithm
with more traditional approximation algorithms.

All the proposed algorithms have been implemented in the C programming
language, to obtain the fastest execution times as possible. All lists have been
implemented as arrays. We have associated a boolean flag to each element of
the lists, indicating whether the element has to be considered as deleted or not,
so that we can assume that the removal of a generic element L[i] from a list
L takes a constant time. As for sorting operations, we have assumed to use
some comparisons–based optimal algorithm such as QuickSort or MergeSort,
which take Θ(k log k) time steps to sort k elements; in our experiments, we have
indeed used the QuickSort routine included in the standard C libraries.

The first heuristic we consider is the greedy algorithm. This algorithm main-
tains a list L of elements to be considered. At the beginning of the execution
L contains all the elements {e1, e2, . . . , ek} of the instance. An integer variable
st, initially set to 0, indicates the amount of energy currently stored into the
gate. The algorithm repeats the following operations until L becomes empty:
first it finds the minimum positive value of st + `, with ` ∈ L, then it updates

A Membrane Algorithm for the Min Storage Problem 411

the value of st with st + `, and finally it removes ` from L. An integer variable
stmax records the maximum value reached by st; the value of stmax at the end
of the execution is the result returned by the greedy algorithm. It is easily seen

Fig. 7. Pseudocode for the Greedy (on the left) and Min (on the right) algorithms

that this algorithm can also be implemented as shown on the left side of Figure
7. From the inspection of the pseudocode it is clear that, under the hypotheses
made above, the execution time of the whole algorithm is Θ(k2).

Another heuristic is the Min algorithm, whose pseudocode is shown on the
right side of Figure 7. As we can see, at each iteration of the outer while loop the
minimum of the remaining positive elements is chosen. For each positive element
considered the inner while loop takes as many negative elements as possible,
choosing the maximum of them (that is, the one with minimum absolute value)
at each iteration. After an initial sorting, each element is considered only once
during the execution of the two while loops; hence, the total execution time
of the algorithm is Θ(k log k). We have also considered a dual algorithm, which
we have called Max, where at each iteration of the outer loop the maximum of
the remaining positive elements is chosen, whereas at each iteration of the inner
loop the minimum of the remaining negative values is chosen.

Another variation is the MaxMinMax algorithm, where at each iteration of
the outer while loop the maximum of the remaining positive values is chosen,
as in Max. This time, however, there are two inner while loops: first we remove
(as much as possible) the minimum negative elements, that is those with highest
absolute value, and then we remove as much as possible the maximum elements.

412 A. Leporati and D. Pagani

Also in this case there exists a dual algorithm, called MinMaxMin, where at
each iteration of the outer loop we remove the minimum of the remaining positive
elements, and in the two inner loops we remove first the maximum and then the
minimum of the remaining negative elements.

A further variation is given by algorithms MinMaxMinMax and MaxMin-

MaxMin. In the outer loop of these algorithms the maximum or the minimum
of the remaining positive elements is alternately chosen; in particular, in the
former algorithm the first element chosen from the instance is the minimum of
positive elements, whereas in the latter algorithm the maximum element of the
instance is chosen first. The two inner loops are just like those of MaxMinMax

and MinMaxMin; in particular, if the minimum of positive values has been
chosen in the outer loop then we first remove the maximum negative elements
and then the minimum ones, whereas we do the opposite if the maximum of
positive elements was chosen. It is immediately seen that all the variations just
exposed are uninfluent to the asymptotic execution time, that remains equal to
Θ(k log k).

Another approach to solve Min Storage is the Best Fit algorithm, shown
in Figure 8. Best Fit assumes as a first estimate for the capacity of the gate

Fig. 8. Pseudocode for the Best Fit algorithms

(denoted by est in the pseudocode) the theoretical lower bound max1≤i≤k |ei|.
During the execution of the algorithm the estimate for the capacity is adjusted,
by increasing it of the smallest possible amount. Precisely, at each iteration of
the outer while loop we add to the internal storage some positive values from the
instance, and then we add some negative values. Positive values of the instance
are scanned from the maximum down to the minimum; each of them is added

A Membrane Algorithm for the Min Storage Problem 413

to the internal storage (and removed from the instance), unless the resulting
value exceeds est. Analogously, negative values are scanned from the minimum
to the maximum; each of them is added to the internal storage (and removed
from the instance), unless the resulting value becomes negative. If at some point
no positive value can be added — that is, if st + min(Lp) > est, where st is
the energy currently stored into the gate — then we adjust the value of est

by putting est = st + min(Lp). Now we can add min(Lp), the minimum of the
remaining positive elements, to the internal storage and then try to add some
negative elements. The result returned by the algorithm is the value of est at
the end of the execution, that is, after all the elements of the instance have
been considered. A direct inspection of the pseudocode allows us to see that the
execution time of Best Fit is Θ(k2).

7 Comparison Experiments

In this section we describe three computer experiments we have performed to
compare the behavior of the proposed heuristics with MA4MS LS. Each instance
was generated according to the random process described in section 4. All the
classical heuristics, as well as MA4MS LS (with m = 300 membranes and d =
500 iterations), have been executed on a number of instances, and for each
algorithm we have computed its average coefficient of approximation as well as
the corresponding variance. The results obtained during these experiments are
illustrated in Figure 9.

In the first experiment we have generated 100 instances, each one containing
12 elements. The elements were chosen from the interval [−106, 106] of integers.
The small number and length of instances have been chosen in order to allow

Fig. 9. Results obtained during the three computer experiments

the computation of optimal solutions through the “brute force” algorithm that
examines all permutations in Sk. This means that the obtained results are the
real average coefficients of approximation of the involved heuristics. Due to the

414 A. Leporati and D. Pagani

length of instances, during the other two experiments we were not able to com-
pute optimal solutions; hence, in those cases, in order to compute the coefficients
of approximation we have used the theoretical lower bound max1≤i≤k |ei| as the
optimal solution, thus obtaining upper bounds to the real coefficients. Indeed,
the first experiment was conceived to compare these upper bounds with the real
coefficients of approximation, although computed over very small instances. As
we can see from the tables, the values obtained are pretty similar.

In the first experiment, among the traditional heuristics Best Fit has ob-
tained the best average coefficient of approximation, and also the smallest vari-
ance; this means that it frequently finds a good solution. On the other hand, the
membrane algorithm has always found the optimal solution. This is probably due
to the fact that, since the number of regions is high with respect to the length of
the instances, then the probability that an optimal solution is produced during
the initial generation of candidate solutions is very high. Further, a relatively
high number of iterations in the algorithm allows such optimal solution to reach
the innermost membrane before the algorithm halts.

In the second experiment we have generated 100000 instances of 100 elements,
each taken from the interval [−106, 106] of integers. As we can see in Figure 9,
for traditional heuristics we have obtained results similar to those of the first
experiment. MA4MS LS has obtained both a low average coefficient of approx-
imation and a (very) low variance; moreover, it performs better than almost
all the traditional heuristics. However, the winner is Best Fit. An interesting
observation is that Best Fit did not find a solution equal to max1≤i≤k |ei| for
only 4564 of the 100000 instances; since the optimal solution cannot be less than
this value, this means that for at least 95.4% of instances Best Fit found the
optimal solution. We can explain this result by saying that Best Fit performs
so well because it has been intentionally conceived for Min Storage. We are
currently investigating whether higher values for the parameters m and d would
lead to a better performance of MA4MS LS. Let us note, however, that even if
this hypothesis should be true, the execution time of the algorithm would make
us prefer again Best Fit, since it is very quick. Does this mean that we should
forget MA4MS LS? The answer is negative, as shown by the next experiment.

For the third experiment, we have considered a variant of the Min Storage

problem, where we have relaxed the requirement that the amount of energy
stored into the gate at the beginning of the computation is zero. This corresponds
to a natural extension of the notion of conservative computation, obtained by
letting the gate to have a positive amount ε of energy stored at the beginning
of the computation, and requiring that exactly the same amount ε of energy is
stored into the gate at the end of the computation. When this situation occurs,
we say that the computation is ε–conservative. Hence up to now we have dealt
with 0–conservativeness. Clearly also the variant of Min Storage concerning ε–
conservative computations (with ε ≥ 0) is NP–hard, by the restriction property
[2, page 63], since it contains Min Storage as a particular case.

In the third experiment we generated 100 instances, each one composed by
100 elements taken from the interval [−106, 106] of integers. For each instance we

A Membrane Algorithm for the Min Storage Problem 415

ran the proposed algorithms, varying the initial energy ε from 0 to max1≤i≤k |ei|,
with steps of 100. At first sight it may be surprising to see that Best Fit gives
no more the best results: indeed, among the traditional heuristics MinMaxMin-

Max has both the lowest average coefficient of approximation and the lowest
variance. It is our opinion that Best Fit does not perform better than Min-

MaxMinMax because the former algorithm starts by considering the elements
of the instance from the greatest positive to the smallest positive element, each
time taking the element if there is enough free storage into the gate; negative
elements are considered only later. Of course this may not be the optimal strat-
egy, especially when the initial energy stored into the gate is high with respect
to gate capacity. The latter algorithm alternately chooses the minimum and the
maximum of the positive elements remaining into the instance, and then it im-
mediately considers negative elements: as a consequence, it has more chances to
make the right choices. Some modifications to the Best Fit algorithm in order
to perform better when there is a positive initial amount of energy into the gate
are currently under consideration.

However, the absolute winner in this experiment is MA4MS LS. Once again it
has a very low variance, and almost the same average coefficient of approximation
as in the previous experiment; we can interpret this fact by saying that MA4MS
LS is a stable algorithm, in the sense that its performance is not affected by
small changes in the definition of the instances.

8 Conclusions

In this paper we have proposed some polynomial time approximation heuristics
for Min Storage, a strongly NP–hard optimization problem that naturally
arises in the context of conservative (that is, energy preserving) computations.
One of the proposed heuristics is a membrane algorithm which was inspired by
a previous work by Nishida [6].

We studied the behavior of all these heuristics on (almost) uniformly ran-
domly chosen instances through several computer experiments. A first set of
experiments allowed us to understand that a very simple local optimization al-
gorithm, LocalSearch4MS, suffices to make the membrane algorithm obtain
good solutions for Min Storage. We have called MA4MS LS the resulting algo-
rithm. The results obtained from a second set of experiments suggest that Min

Storage seems to be easy to solve on uniformly randomly chosen instances. In
particular, one of the proposed heuristics, namely Best Fit, seems to perform
very well when the initial energy stored into the gate is zero. Interestingly, the
same heuristic is no more the best when the initial energy is positive.

If we look at the average coefficient of approximation obtained for MA4MS
LS during the second set of experiments, we can see that we always obtain
approximately the same value. Moreover, the low value obtained for the variance
shows that the algorithm is also pretty stable, that is, its (average) behavior is
not affected too much by small changes in the instances of the problem. If we
compare this situation with the behavior of Best Fit, we can draw the following

416 A. Leporati and D. Pagani

conclusions. Best Fit performs well since it is an algorithm which has been
intentionally crafted for Min Storage; stated otherwise, it strongly reflects the
structure of the problem. On the contrary, MA4MS LS is a general algorithm,
that behaves in the same way independent of the problem on which it is applied.

Acknowledgements

We gratefully thank the anonymous referees, whose comments have helped us to
improve a previous version of this paper.

References

1. G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti–Spaccamela, M. Pro-
tasi. Complexity and Approximation. Combinatorial Optimization Problems and
Their Approximability Properties. Springer–Verlag, 1999.

2. M. R. Garey, D. S. Johnson. Computers and Intractability. A Guide to the Theory
on NP–Completeness. W. H. Freeman and Company, 1979.

3. G. V. Gens, E. V. Levner. Computational complexity of approximation algorithms
for combinatorial problems. Proceedings of the 8th International Symposium on
Mathematical Foundations of Computer Science, Lecture Notes in Computer Sci-
ence 74, Springer–Verlag, Berlin, 1979, pp. 292–300.

4. D. E. Goldberg, R. Lingle. Alleles, Loci and the Traveling Salesman Problem.
In Proceedings of the International Conference on Genetic Algorithms, 1985, pp.
154–159.

5. A. Leporati, C. Zandron, G. Mauri. Conservative Computations in Energy–based
P systems. In Giancarlo Mauri, Gheorghe Păun, Mario J. Pérez-Jiménez, et al.
Membrane Computing: 5th International Workshop, WMC 2004, Milan, Italy, June
14–16, 2004, LNCS 3365, Springer–Verlag, 2005, pp. 344–358.

6. T. Y. Nishida. Membrane Algorithms. In Rudolf Freund, Gheorghe Păun, Grzegorz
Rozenberg, Arto Salomaa (Eds.) Membrane Computing: 6th International Work-
shop, WMC 2005, Vienna, Austria, July 18–21, 2005, LNCS 3850, Springer–Verlag,
2006, pp. 55–66.

7. G. Păun. Computing with membranes. Journal of Computer and
System Sciences, 1(61):108–143, 2000. See also Turku Centre for
Computer Science — TUCS Report No. 208, 1998. Available at:
http://www.tucs.fi/Publications/techreports/TR208.php

8. G. Păun. Computing with Membranes. An Introduction. Bulletin of the EATCS,
67:139–152, February 1999.

9. G. Păun. Membrane Computing. An Introduction. Springer–Verlag, Berlin, 2002.
10. G. Păun, G. Rozenberg. A Guide to Membrane Computing. Theoretical Computer

Science, 287(1):73–100, 2002.
11. The P systems Web page: http://psystems.disco.unimib.it/

