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Abstract. We consider synchrony and asynchrony in the behaviour of
various models of membrane systems, which may differ in the way indi-
vidual reactions are defined as well as in the way multisets of these reac-
tions can be executed in a single computational step. We concentrate on
the properties of ongoing computations, including the unbounded ones.
Our focus is on the properties of system states involved in such com-
putations as well as on concurrency and causality relationships between
executed reactions. This should be contrasted with the approach which
investigates different notions of ‘results’ produced through halting com-
putations of membrane systems. As a formal behavioural model we use
Petri nets and their processes which capture the notion of an execution
in concurrent contexts. We continue our earlier work reported in [14],
where a systematic and structural link has been established between a
basic class of membrane systems and Petri nets. Here, we look at some
natural extensions of this basic class of membrane systems and investi-
gate the ways in which they can be represented within the behavioural
model provided by Petri nets.
Keywords: membrane systems, P systems, Petri nets, localities, causal-
ity and concurrency, processes, synchrony, asynchrony, GALS.

1 Introduction

Inspired by the way living cells are divided by membranes into compartments
where biochemical reactions may take place, membrane systems (also known as
P systems) have become a prominent new computational model [1, 20, 23, 24]. In
a nutshell, a reaction transforms multisets of molecules (or objects) present in
the compartment into new molecules, possibly transferring some to neighbouring
compartments and the environment. Consequently, all aspects of the dynamic
behaviour of membrane systems are determined by the reaction or evolution rules
defined for each compartment and on the way in which these rules may occur.
The resulting transformations (or computation steps) are applied starting from
an initial configuration (a distribution of objects). Furthermore, a notion of a
successful (or halting) computation with its output is defined [23, 24]. Different
types of membrane systems have been considered, depending on the form of
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the rules and how they are applied, and on input/output definitions. In fact,
studies in the field of membrane systems are often concerned with investigating
the possible outcomes of the computations, i.e., the computational power of the
various models.

The aim of our work, however, is different in that we are interested in describ-
ing what is actually going on during an execution of a membrane system; alter-
natively, one might say that we are interested in computations rather than com-
putability. Thus, we focus on possible system states (configurations) occurring in
ongoing computations as well as on the concurrency and causality relationships
between executed reaction rules. This emphasis on possible behaviours (runs)
rather than input/output relations, further implies that all possible computa-
tions need to be considered, including non-successful and infinite ones (which
are also relevant from a biological/cell point of view).

There are basically two distinguishing features of any model of membrane
systems when one is interested in the structural properties of their executions.3

The first is the degree of synchrony present in a single computation step; in
the extreme case, commonly considered in the theory of membrane systems, in
a single step the system is transformed by a maximally concurrent execution
of reaction rules (no more rules in whatever compartment could have been ap-
plied). The second is the definition of individual reactions; in the simplest case, a
reaction is supposed only to consume and produce multisets of molecules, but in
more elaborate models, its execution can, e.g., be conditional or affect the struc-
ture of the cell. In this paper, we will consider different kinds of synchrony as
well as different types of reaction rules, and we will indicate how Petri nets (see,
e.g., [9, 27]) can be used to capture the structural properties of the computations
of varying models of membrane systems.

Essentially, Petri nets are bipartite directed graphs consisting of two kinds
of nodes, called places and transitions. Places indicate the local availability of
resources (represented by so-called tokens) and thus can be used to represent
objects in specific compartments. Transitions are actions which can occur de-
pending on local conditions related to the availability of resources and they can
be used to directly represent reaction rules associated with specific compart-
ments. When a transition occurs it consumes resources from its input places and
produces items in its output places, thus mimicking the effect of a reaction rule
(see Figure 2). Since multiset calculus is basic for membrane systems and also
for computing the token distribution in Petri nets [7], some connections between
the two models were already established including interpretations of reaction
rules of membrane systems using Petri net transitions (e.g., [8, 26]). Petri nets
are a fundamental modelling tool for elementary relations between occurrences
of actions, moreover providing both a language and a method for behavioural
analysis through so-called processes formalizing the concept of a concurrent run
and a corresponding theory of labelled partial orders. It is worth mentioning
that models based on a more architectural view such as process algebras do not

3 Note that we are not interested here in the exact definition of a successful compu-
tation nor in the result it produces.
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yield themselves as easily to the modelling of membrane systems since the struc-
ture of the latter is relatively simple, and the main advantage of the former, viz.
compositionality in system specification and execution, is not needed.

This paper builds on previous work [14, 15], where it has been demonstrated
that a structural relationship between Petri nets and membrane systems can be
established at the system level. A formal translation has been given from a basic
class of membrane systems into a class of Petri nets. The direct correspondence
of Petri net transitions together with their input and output places to evolution
rules is the key property which makes the translation suitable for dealing with
structural aspects of the behaviour of membrane systems. It implies that the
causality and concurrency relations between applications of reaction rules are
preserved in the relationships between occurrences of the corresponding transi-
tions. Thus also the synchrony in computation steps corresponds to potentially
simultaneously occurring transitions. As shown in [14], in case the membrane
system evolves in a synchronous fashion (i.e., with a maximally concurrent exe-
cution of reaction rules in each computation step), its computations are faithfully
reflected in the maximally concurrent step sequence semantics of its Petri net.
In Place/Transition nets with localities (or PTL-nets), the specific class of Petri
nets introduced in [14], each transition moreover belongs to a location, similar
to the distribution of the reaction rules over the compartments in a membrane
system. Since locality aspects of the resources consumed and produced by tran-
sitions is explicitly supported by their underlying graph structure, this locality
information is not relevant for the maximal concurrency semantics of a Petri net.
However, transitions with associated localities can be used to restrict synchrony
to certain locations: in each step, and for each locality actively involved in that
step, as many transitions belonging to this locality as possible are executed.4

Thus the PTL-net model and its locally maximal concurrency semantics facili-
tate the investigation of membrane systems working under the natural assump-
tion that synchrony is restricted to individual compartments. (Observe that this
semantics leads to a more general model: maximal concurrency can be studied in
the framework of PTL-nets with only one locality). In general, a step sequence
semantics for Petri nets provides important insights into concurrency aspects of a
system when executed. Such semantics, however, are based on ordered sequences
of steps which may obscure the true causal relationships between occurrences of
transitions since not all ordering is a consequence of causality. Still information
on causal relationships is often highly relevant for system design and analysis.
As was recognized a long time ago (see [19]), Petri nets support a formal ap-
proach where this information is readily available. Runs (as given, e.g., by step
sequences) are unfolded into structures which explicitly represent causality and
concurrency (unraveling the steps). For this purpose, labelled occurrence nets,
called processes are used (see, e.g., [4, 5, 11, 28]). The standard process semantics
of Place/Transition nets (based on arbitrary steps) does not work in the PTL
case due to lack of information on potential executability of transitions relevant

4 With this semantics, PTL-nets are an example of so-called ‘globally asynchronous
locally synchronous’, or GALS, systems (see [16]).
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for the local maximality of executed steps. To cope with this problem, in [14]
the occurrence nets generated by PTL-nets are adapted leading to the notion of
barb-processes formally defined and investigated in [15].

Until now we have considered only a very basic class of membrane systems
with simple evolution rules and evolving in a (locally) synchronous fashion. In
this paper, we will attempt to establish a similar set-up for other existing, more
sophisticated, variants and extensions of membrane systems. For each of these
variants we intend to define a suitable (extension of) the PTL-net model with
a proper semantics. Obviously, we aim at retaining the direct correspondence
between (occurrences of) transitions and (application of) evolution rules in order
to guarantee that (local) synchrony and asynchrony in the membrane systems
have corresponding interpretations in the PTL-net. Note that this work is a
preliminary investigation, and technical details are left to forthcoming papers.

2 Preliminaries

In this paper, a multiset (over a set X) is a function m : X → N. By N
X we

denote the set of multisets over X . For two multisets m and m
′ over X , we

denote m ≤ m
′ if m(x) ≤ m

′(x) for all x ∈ X . Moreover, a subset of X may
be viewed through its characteristic function as a multiset over X , and for a
multiset m we denote x ∈ m if m(x) ≥ 1. Multiset m over X is finite if there are
finitely many x ∈ X such that m(x) ≥ 1; the cardinality of m is then defined

as |m|
df

=
∑

x∈X m(x). The sum of two multisets m and m
′ over X is given by

(m + m
′)(x)

df

= m(x) + m
′(x), the difference by (m − m

′)(x)
df

= max{0,m(x) −
m

′(x)}, as a total function extending set difference. The multiplication of m by

a natural number n is given by (n · m)(x)
df

= n · m(x). Moreover, any finite sum
m1 + · · · + mk will also be denoted as

∑
i∈{1,...,k} mi.

2.1 Basic membrane systems

A (basic) membrane system (of degree m ≥ 1) [20, 24] is a construct Π
df

=
(V, µ, w0

1 , . . . , w
0
m, R1, . . . , Rm), where:

– V is a finite alphabet consisting of (names of) objects;
– µ is a membrane structure given by a rooted tree with m nodes, represent-

ing the membranes — we assume that the nodes are given as the integers
1, . . . ,m, and (i, j) ∈ µ will mean that there is an edge from i (parent) to j
(child) in the tree of µ;

– each w0
i is a multiset of objects initially associated with membrane i;

– each Ri is a finite set of reaction rules or evolution rules r associated with
membrane i, of the form lhsr → rhsr, where lhsr — the left hand side of r
— is a non-empty multiset over V , and rhsr — the right hand side of r —
is a possibly empty multiset over

V ∪ {aout | a ∈ V } ∪ {ainj
| a ∈ V and (i, j) ∈ µ} .
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Symbols ainj
represent objects a that will be sent to a child node j and aout

stands for an a that will be sent out to the parent node. (Nodes represent mem-
branes which in their turn define compartments: compartment cj is defined by
membrane mj , if it is enclosed by mj and in-between mj and its children if
any.) We also assume that no evolution rule r associated with the root of the
membrane structure uses any aout in rhsr.

A membrane system Π as above evolves from configuration to configuration
as a consequence of the application of (multisets of) evolution rules in each

compartment. Formally, a configuration is a tuple C
df

= (w1, . . . , wm) where each
wi is a multiset of object names; we define a vector multi-rule R as an element
of N

R1 × · · · × N
Rm . Given a vector multi-rule R = (R̂1, . . . , R̂m), we use as

additional notation lhsi =
∑

r∈Ri
R̂i(r) · lhs

r for the multiset of all objects in

the left hand sides of the rules in R̂i and, similarly, rhsi =
∑

r∈Ri
R̂i(r) · rhs

r is
the multiset of all — possibly indexed — objects in the right hand sides.

We now come to a point where we need to make precise the execution seman-
tics of the basic membrane system model. As we already mentioned, it can be
defined in a number of ways, depending on the balance between synchrony and
asynchrony in the allowed behaviours. We will consider four kinds of execution
semantics that have been investigated in the area of membrane systems, i.e.,
free parallelism [25], minimal parallelism [10], maximal parallelism, and locally
maximal parallelism.

First, given two configurations, C = (w1, . . . , wm) and C ′ = (w′
1, . . . , w

′
m),

C can free-evolve into C ′ (or C
R

=⇒free C
′) if there exists a vector multi-rule

R = (R̂1, . . . , R̂m) such that for every 1 ≤ i ≤ m, lhsi ≤ wi and, for each object
a ∈ V ,

w′
i(a) = wi(a) − lhsi(a) + rhsi(a) + rhsparent(i)(aini

) +
∑

(i,j)∈µ

rhsj(aout) ,

where parent(i) is the father membrane of i unless i is the root in which case
parent(i) is undefined and rhsparent(i)(aini

) is omitted. Note that any j in the
last term must be a child membrane of i.
By the first condition, the configuration C has in each membrane i enough
occurrences of objects for the application of the multiset of evolution rules R̂i,
and the second condition describes the effect of the application of the rules in R.
We further say that C can:

– min-evolve into C ′ (or C
R

=⇒min C
′) if |R1| + · · · + |Rm| = 1;

– max-evolve into C ′ (or C
R

=⇒max C
′) if there is no i and rule r in Ri such

that lhsr + lhsi ≤ wi; and

– lmax-evolve into C ′ (or C
R

=⇒lmax C
′) if there is no i and rule r in Ri such

that lhsr + lhsi ≤ wi and |Ri| ≥ 1.

A free/min/max/lmax-computation of Π is then defined to be a sequence of

free/min/max/lmax-evolutions starting from C0
df

= (w0
1 , . . . , w

0
m), the initial con-

figuration.
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Fig. 1. PTL-net of the one-producer/two-consumers system.

2.2 Petri nets with localities

We first recall the key notions of the standard Petri net model. A PT-net is

a tuple N
df

= (P, T,W,M0) such that P and T are finite disjoint sets; W :
(T×P )∪(P×T ) → N is a multiset; and M0 is a multiset of places. The elements
of P and T are respectively the places and transitions, W is the weight function
of N , and M0 is the initial marking. In diagrams, places are drawn as circles,
and transitions as rectangles. If W (x, y) ≥ 1 for some (x, y) ∈ (T ×P )∪ (P ×T ),
then (x, y) is an arc leading from x to y. As usual, arcs are annotated with their
weight if this is 2 or more. We assume that, for every t ∈ T , there is a place p
such that W (p, t) ≥ 1.

Places represent local states, while markings are global states of systems
represented by PT-nets. Transitions represent actions which may occur at a
given marking and then lead to a new marking (the weight function specifies
what resources are consumed and produced during the execution of such actions).

The pre- and post-multiset of a transition t ∈ T are multisets of places given,

for all p ∈ P , by: preN (t)(p)
df

= W (p, t) and postN (t)(p)
df

= W (t, p). Both
notations extend to multisets of transitions U :

preN (U)
df

=
∑

t∈U

U(t) · preN (t) and postN (U)
df

=
∑

t∈U

U(t) · postN (t) .

In order to represent the compartmentisation of membrane systems, one can
add the notion of located transitions. In the proposed way of specifying locality
for the transitions in a PT-net, each transition belongs to a fixed unique locality.
The exact mechanism for achieving this is to introduce a partition of the set of all
transitions, using a locality mapping D. Intuitively, two transitions for which D

returns the same value will be co-located.
Consider the PTL-net depicted in Figure 1. It conveys, in particular, the

information that transitions a and c are assigned one locality, whereas tran-
sitions t and u are assigned another locality. This PTL-net is a model of a
producer/consumer system which reflects the view that the producer operates
away (at location 1) from the two consumers (location 2).

A PT-net with localities (or PTL-net) is a tuple NL
df

= (P, T,W,M0,D), where

und(NL)
df

= (P, T,W,M0) is the underlying PT-net and D : T → N is a location
mapping for the transition set T . In the diagrams of PTL-nets, transitions are
shaded rectangles with the locality being shown in the middle. Note that D is
merely a labelling of transitions, it is not meant as a renaming (as used later for
occurrence nets).
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We now can introduce execution semantics for the PTL-net which closely
reflects the different degrees of synchrony in the behaviours of basic membrane
systems.

A step is a multiset of transitions, U : T → N. It is free-enabled at a marking
M (or M [U〉free) if M ≥ preN (U). Thus, in order for U to be free-enabled at
M , for each place p, the number of tokens in p under M should at least be equal
to the total number of tokens that are needed as an input to U , respecting the
weights of the input arcs. We further say that U is:

– min-enabled at M (or M [U〉min) if |U | = 1;
– max-enabled at M (or M [U〉max) if there is no transition t such that we have
M [U + {t}〉free; and

– lmax-enabled at M (or M [U〉lmax) if there is no transition t such that we
have M [U + {t}〉free and D(t) ∈ D(U).

Thus localities are only relevant for lmax-enabledness.
Let m ∈ {free,min,max, lmax} be a mode of execution. If U is m-enabled at

M , then it can be m-executed leading to the marking M ′ df

= M − preN (U) +
postN (U). This means that the execution of U ‘consumes’ from each place p
exactly W (p, t) tokens for each occurrence of a transition t ∈ U that has p as
an input place, and ‘produces’ in each place p exactly W (t, p) tokens for each
occurrence of a transition t ∈ U with p as an output place. If the m-execution
of U leads from M to M ′ we write M [U〉mM

′. A finite sequence σ = U1 . . . Un

of non-empty steps is an m-step sequence from the initial marking M0 if there
are markings M1, . . . ,Mn of N satisfying Mi−1[Ui〉mMi for every i ≤ n. Such a
σ is also called an m-step sequence from M0 to Mn, and Mn itself is called an
m-reachable marking.

2.3 From basic membrane systems to PTL-nets

We now recall the details of the translation from the basic model of membrane
system to PTL-nets introduced in [14]. Let Π = (V, µ, w0

1 , . . . , w
0
m, R1, . . . , Rm)

be a membrane system of degree m. Then the corresponding PTL-net is NLΠ
df

=
(P, T,W,M0,D) where the various components are defined thus:

– P
df

= V × {1, . . . ,m};

– T
df

= T1 ∪ . . . ∪ Tm where each Ti contains a distinct transition tri for every
evolution rule r ∈ Ri;

– for every place p = (a, j) ∈ P and every transition t = tri ∈ T ,

W (p, t)
df

=

{
lhsr(a) if i = j
0 otherwise

W (t, p)
df

=





rhsr(a) if i = j
rhsr(aout) if (j, i) ∈ µ
rhsr(ainj

) if (i, j) ∈ µ
0 otherwise

– for every place p = (a, j) ∈ P , its initial marking is M0(p)
df

= w0
j (a).
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Fig. 2. A membrane system (a); and the corresponding PTL-net (b).

– for every transition t = tri ∈ T , its locality is D(t)
df

= i.

An example is the membrane system depicted in Figure 2(a). It consists of
two nested membranes (m1 and m2), two rules (rule r associated with m1, and
rule r′ associated with m2; m1 is the child and m2 is the root in the membrane
structure), and three symbols denoting molecules (a, b, and c). Initially, the
compartment c1 inside m1 contains two copies of both a and b, and c2, in-
between the two membranes, contains two copies of b and a single copy of c. To
model this membrane system as a PTL-net, we introduce a separate place (x, j)
for each kind of molecule x and compartment cj defined by membrane mj . For
each rule r associated with a membrane mi we introduce a separate transition
tri with locality i. If the transformation described by a rule r of membrane mi

consumes k copies of molecule x from compartment cj , then we introduce a
k weighted arc from place (x, j) to transition tri , and similarly for molecules
produced by transformations. Finally, assuming that, initially, compartment cj

contained n copies of molecule x, we introduce n tokens into place (x, j). The
resulting PTL-net is depicted in Figure 2(b).

Let C = (w1, . . . , wm) be a configuration of Π . Then the corresponding

marking φ(C) of NLΠ is given by φ(C)(a, i)
df

= wi(a), for every place (a, i) of

NLΠ . Similarly, for any vector multi-rule R = (R̂1, . . . , R̂m) of Π , we define

a multiset ψ(R) of transitions of NLΠ such that ψ(R)(tri )
df

= R̂i(r) for every
tri ∈ T . Note that φ is a bijection from the configurations of Π to the markings
of NLΠ , and ψ is a bijection from vector multi-rules of Π to steps of NLΠ .

We now can formulate a fundamental property concerning the relationship
between the dynamics of the basic membrane system Π and that of the cor-
responding PTL-net. Let m ∈ {free,min,max, lmax} be a mode of execution

of membrane systems. Then: C
R

=⇒m C ′ if and only if φ(C) [ψ(R)〉m φ(C ′).
Since the initial configuration of Π corresponds through φ to the initial marking
of NLΠ , the above immediately implies that the m-computations of Π coincide
with the m-step sequences of the PTL net NLΠ .
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Causality and concurrency The four different modes of execution of PTL-
nets provide important insights into the concurrency aspects of the underlying
systems. They are, however, still sequential in nature in the sense that steps occur
ordered thus obscuring the true causal relationships between the occurrences of
transitions. On the other hand, information on causal relationship is often of
high importance for system analysis and/or design. Petri nets can easily support
a formal approach where this information is readily available as was recognised a
long time ago, see [19] where it was proposed to unfold behaviours into structures
allowing an explicit representation of causality, conflict and concurrency. A well-
established way of developing such a semantics is based on a class of acyclic
Petri nets, called occurrence nets [28]. What one essentially tries to achieve is
to trace the changes of markings due to transitions being executed along some
legal behaviour of the original PT-net, and in doing so record which resources
were consumed and produced.

Free parallelism Looking at the free-step sequence σ = {a}{t, a}{u, t} of the
PTL-net in Figure 1, it is not immediate that transition u could have occurred
before the second occurrence of transition a or, in other words, that the former
is not causally dependent on the latter.

Figure 3 illustrates the idea in which we unfold the scenario represented
by σ. The initial stage shows just the initial marking which includes two separate
(labelled) conditions (this is how places are called in occurrence nets) to represent
the two initial tokens in place r. Executing step {a} consumes the p-condition,
creates an a-event (this is how transitions are called in occurrence nets), as well
as two new conditions: a p-condition and a q-condition. An important point is to
notice that we create a fresh p-condition rather than a loop back to the initial one
since we want to distinguish between different occurrences of the same token; as
a result the occurrence net being constructed will be an acyclic graph. Another
important point is that the environment of the generated a-event corresponds
exactly to the environment of transition a; namely, it consumes a p-token and
creates a p-token and a q-token. After that, executing step {t, a} consists in
consuming three conditions and creating two events and three fresh conditions,
and similarly for the last step {u, t}. And, as a final result, we obtain an acyclic
net labelled with places and transitions of the original PT-net; it is called a
process of the original PT-net. The process net has a default initial marking
consisting of a token in each of the conditions without an incoming arc.

It is now possible to look both at the structure of the process net and the
executions which are possible from its default initial marking, making some
important observations relating to:

– Causality. The causality relationships among the executed transitions can
be read-off by following directed paths between the events; for example in
Figure 3, the lower t-event is caused by both a-events, while the upper one
is caused only by the leftmost a-event.

– Concurrency. Events for which there is no directed path from one to another
can be thought of as concurrent.
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Fig. 3. Constructing a process net corresponding to {a}{t, a}{u, t} (localities are omit-
ted as they are not relevant for the free parallelism semantics).

– Reachability. Any maximal set of conditions for which there is no directed
path from one condition to another corresponds to a reachable marking of
the original PT-net.

– Representation. The step sequence on the basis of which the process was
created can be executed from the initial default marking in the occurrence
net. So the original behaviour has been retained. In Figure 3, there are
several different free-step sequences generated by the process net defined by
σ = {a}{t, a}{u, t}, including σ itself.

– Soundness. Any step sequence which can be executed from the default initial
marking to the default final marking (consisting of tokens placed in each of
the conditions without an outgoing arc) of the process net is also a legal
step sequence of the original PT-net. Processes provide a highly compressed
representation of step sequence behaviours of the original PT-net (this fea-
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Fig. 4. Process net corresponding to the step sequence {a}{t, a} (a); and its default
initial marking (b).

ture has been exploited to a significant degree in the development of efficient
model checking algorithms for PT-nets).

Minimal parallelism From the point of view of causality and concurrency, the
minimal parallelism semantics is almost exactly the same as in the case of free
parallelism. The only difference is that soundness is formulated with respect to
step sequences where each component is a singleton, rather than a general finite
multiset of transitions.

Locally maximal parallelism As a first attempt, we simply adopt the un-
folding strategy as in the case of free parallelism. We only ensure that the step
sequence consists of lmax-steps. Moreover, we preserve the localities of the transi-
tions in the events created while constructing the occurrence net. Figure 4 shows
the result for the PTL-net of Figure 1 and the lmax-step sequence {a}{t, a}.
Although this is straightforward, we still need an argument that the resulting
process is what one would want to take for further analyses. In particular, one
would want to retain the soundness of the previous construction. In the case of
our example, we can execute the occurrence net and conclude that under the
locally maximal parallelism it admits the step sequence {a}{a}{t} which is not
a legal lmax-step sequence since after {a}{a}, two occurrences of t are enabled.
Thus, in general it would be too hasty to accept the standard unfolding routine
as satisfactory since information on (additional) enabledness may be lost.

Consider further the PTL-net in Figure 5(a) and its lmax-step sequence
{t, u, v}{w, z}. Proceeding as in the case of free parallelism, we obtain an oc-
currence net shown in Figure 5(b). Now the problem is that it has an lmax-step
sequence from the default initial marking which corresponds to {u, v}{t, z}{w}.
The latter, however, is not an lmax-step sequence of the original PTL-net. An
intuitive reason is that the standard unfolding ‘forgets’ that transition x was
enabled at a stage where transition w was selected. Then, delaying the execution
of the w-event, creates a situation where the executed step (though lmax-enabled
within the occurrence net) does not correspond to an lmax-step in the PTL-net.

To cope with the above problem, [15] added to occurrence nets special barb-
events, represented by darkly shaded rectangles. Barb-events are not labelled
with transition names and are not meant to be executed; rather, they are used
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Fig. 5. PTL-net (a); an occurrence net constructed from step sequence {t, u, v}{w, z}
(b); and a barbed process (c).

in the calculation of the enabled sets of events. Such occurrence nets are called
barbed processes. Rather than providing a full formal definition of how barb-
events are added during the unfolding procedure, which can be found in [15, 16],
we only mention here that it is based on checking for the existence of locally
newly enabled transitions not (yet) included in the executed scenario, e.g., since
another co-located transition was selected.

Figure 5(c) illustrates the modified construction for the net in Figure 5(a,b).
After executing {u, v}, it is now impossible to select {t, z} since there is a record
in the form of the barb-event that such a step would not be maximal in the
locality to which transition {z} belongs. The only way of continuing is to execute
{t} and after that {z, w}, generating a legal lmax-step sequence {u, v}{t}{z, w}.

Maximal parallelism The maximal parallelism semantics of a PTL-net co-
incides with the locally maximal parallelism semantics of this PTL-net after
changing it so that all transitions are mapped to the same locality.

3 Extensions expressible within PTL-nets

In the previous section we outlined the way in which the basic membrane systems
can be translated into PTL-nets, and their behavioural properties investigated
using processes nets of the latter. In the rest of the paper, we will change fo-
cus and investigate what happens if more sophisticated types of reaction rules
are allowed. For the sake of simplicity, we will assume from now on that the
membrane systems and PTL-nets are executed according to the free-parallelism
paradigm (notice that the level of synchrony present in executions is orthogonal
to the way individual reaction rules are specified).

We start by considering extensions for which the PTL-net semantics can be
used without any, or with only slight, modifications. These extensions have been
discussed in [23, 2] and additional references will be provided throughout the
text. Note that each extension is motivated by some natural phenomenon in the
area of biological systems.
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Catalysts In this variant, a subset Cat of objects, called catalysts, is distin-
guished and each reaction rule is of the form lhsr → rhsr with either no cat-
alysts involved at all or with lhsr(c) = rhsr(c) = 1 for exactly one c ∈ Cat
and lhsr(c′) = rhsr(c′) = 0 for all other catalysts c′. In other words, in certain
reaction rules a catalyst has to participate, but it is neither destroyed in the
process nor can be created. Clearly, since catalysts can be seen as resources for
the reaction rules in which they occur (to be returned after application), these
rules can be translated into PTL-transitions in exactly the same way as any
other rule. Thus, the translation from Section 2.3 is fully adequate. Similarly,
other variants of catalysts, such as m-stable catalysts and mobile catalysts, can
also be treated by this basic translation.

Rules creation and consumption Within the basic model of membrane
systems no assumptions are made with respect to the number of times a reaction
rule is available for application in a single execution step. Now, it is assumed
that reaction rules are finite resources in the same way as the objects located in
compartments [3]. More precisely, each configuration has additional information
for each membrane about the number of locally available copies of each rule.
Each rule r is of the form lhsr → rhsr/z, with z a multiset over the set of
rules. Rules are executed in the usual manner with respect to the multisets of
objects consumed and created. Moreover, if r when executed is associated with
membrane i, then a copy of r is consumed from the multiset of rules currently
available in i and the multiset z is added to that pool. Note that, we may assume
that each rule is associated with all membranes.

In this case the translation proceeds as in Section 2.3 with two key modifica-
tions: (i) for each transition tri corresponding with rule r associated with mem-
brane i, a unique control place is added which acts as a counter and indicates the
number of copies of r available in the corresponding membrane; (ii) this control
place is an additional input place to tri and if r is of the form lhsr → rhsr/z,
then tri has, for each control place corresponding with a rule r′ ∈ z associated
with i, an additional output place with weight z(r′).

Systems with i/o communication These systems are defined as in Sec-
tion 2.1, except that in rules r of the form lhsr → rhsr the right hand side rhsr

is a multiset over V ∪ {aout | a ∈ V } ∪ {ain | a ∈ V }. The index in of ain means
that a copy of object a is to be moved into any of the inner membranes of the
membrane to which r belongs. Thus every rule represents a set of rules of the
original form, each such rule corresponding to a combination of non-deterministic
choices of inner membranes for all occurrences of an ain. Thus the translation
has to be lifted to a more abstract level and each reaction rule involving sending
objects to inner membranes is translated into a set of transitions with the same
pre-multisets, but possibly different post-multisets. For example, if 3 and 7 are
two inner membranes for the rule ab → cindin, then this rule is translated into
four transitions, with the following post-multisets: {(c, 3), (d, 3)}, {(c, 3), (d, 7)},
{(c, 7), (d, 3)} and {(c, 7), (d, 7)}.
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Symport/antiport In a symport/antiport membrane system the rules associ-
ated with a membrane i are of one of the forms (x, in) or (y, out) — symport
rules — or (x, in; y, out) — antiport rules. Here (x, in) means that the multiset
x is moved from the outside of i to its inside and, similarly, (y, out) means that
multiset y goes from the inside of i to its outside. Moreover, (x, in; y, out) means
that x and y are moved simultaneously. Note, that with the given membrane
structure, it must be the case that x moves from the ‘location’ of the parent of i
to i and y in the opposite direction. Consequently, we can again apply the basic
translation in case of rules of the first two forms. The third one is somewhat dif-
ferent since it consumes objects from two neighbouring compartments. However,
its translation is straightforward and what we simply obtain is a transition tak-
ing tokens from places corresponding to different compartments of the original
membrane system.

Tissue membrane systems In this case objects are transported through chan-
nels rather than membranes. Thus the nested tree-like structure of membranes
is replaced by a graph, with its edges representing channels connecting com-
partments in a completely arbitrary way. Often it is assumed that at most one
(symport or antiport) rule associated with a channel is executed at any given
moment. Since the actual membrane structure is not relevant for the transla-
tion, the first assumption has no effect, and the translation looks as in the case
of symport and antiport rules. The second assumption can be addressed by intro-
ducing, for each communication channel, a special place marked initially with a
single token which is connected by a pair of arcs (pointing in opposite directions)
with every transition representing a reaction rule associated with that channel.
In this way, there can never occur more than one of these transitions at the same
time. As in the case of rules creation and consumption, these additional places
are an example of what might be called a ‘control structure’ which can be used
in the Petri net model to implement a specific behavioural aspect of membrane
systems.

4 Other extensions

Although it is possible to use the basic class of PTL-nets to analyse various
important classes of membrane systems, not all interesting phenomena can be
modelled by using purely the features of PTL-nets.

Promoters It is now assumed that a reaction rule can have the form lhsr →
rhsr|c meaning that c is a promoter object which has to be present for the rule
to be executed [6]. It should be stressed that such an object is not a catalyst
since catalysts are actively involved in reactions, whereas a single occurrence of
c in its role of promoter may enable simultaneously two or more executions of
the rule.

It turns out that the standard model of PTL-nets is no longer sufficient for
the modelling of promoters because arcs between transitions and places indicate
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Fig. 6. PTLA-net of the one-producer/two-consumers system with a non-eager pro-
ducer, and constructing an ao-process corresponding to {a}{t}{a}.

consumption and production. We need an extension with (weighted) activator
arcs, represented by arcs with small black dots at the end. We call the extended
model PTLA-nets. Activator arcs represent ‘tests’ for the presence of tokens in
places. An activator arc of weight n between place p and transition t implies
that the latter can only be executed if the former contains at least n tokens.
The resulting marking is calculated in exactly the same way as before, i.e., the
activator arcs are simply ignored.

The translation of reaction rule lhsr → rhsr |c associated to membrane i
proceeds as the basic translation for lhsr → rhsr, and after that an activator
arc of weight 1 is added to link the resulting transition with place (c, i). A more
elaborate definition of promoters assumes the format lhsr → rhsr |u where u is
a multiset of objects. The translation then proceeds similarly but now a number
of activator arcs of weights greater or equal to 1 are added at the end.

The process semantics of the resulting translations can no longer be cap-
tured using the standard process semantics of Petri nets. What we use are ac-
tivator processes (or ao-processes) which are basic process nets with additional
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(weight 1) activator arcs between events and conditions to test for the presence
of tokens in the places corresponding to the conditions. With the distinguishing
feature of activator arcs being that they do not consume conditions, there may
be several activator arcs adjacent to a single condition (in addition, of course, to
the standard directed arcs and in contrast with the non-branching of conditions
with respect to ordinary arcs).

Consider, for instance, the net in Figure 6 which models a system where
the producer only produces items if there is at least one consumer waiting for
them. A possible free-step sequence is {a}{t}{a} and the construction of the
corresponding ao-process is illustrated in Figure 6. Notice that we have here a
condition which is connected by activator arcs to two different events.

The causality semantics of ao-processes is no longer the same as that of the
standard processes. Basically, in the latter causality is based on partial orders
whereas in ao-processes another relationship, called weak causality, is needed. It
turns out that the standard partial order treatment of causality can be extended
to cover its weak variant as well, and the main results and properties can be
recovered [12, 13].

Inhibitors Inhibitors are objects the presence of which makes the execution of
certain rules impossible. In this case, a reaction rule can have the form lhsr →
rhsr|¬c meaning that c is an object which, when present in the compartment,
inhibits the execution of this rule [6]. Again, and for the same reason as with
promoters, we need to extend PTL-nets, in this case with (weighted) inhibitor
arcs, represented by arcs with small circles at the end (note that activator and
inhibitor arcs are existing extensions of the standard Petri net model). We call
the extended model PTLI-nets. The meaning of an inhibitor arc of weight n ≥ 0
between place p and transition t is that the latter can only be executed if the
former contains at most n tokens (thus, if n = 0 then the place must be empty of
tokens). The resulting marking is calculated in exactly the same way as before,
i.e., the inhibitor arcs are simply ignored.

The translation of reaction rule lhsr → rhsr |¬c associated to membrane i
proceeds as the basic translation for lhsr → rhsr, and after that an inhibitor
arc of weight 0 is added to link the resulting transition with place (c, i). A more
elaborate definition of inhibitors assumes the format lhsr → rhsr|¬u where u is a
set of object symbols. The translation proceeds then similarly but now inhibitor
arcs of any weights can be added.

The process semantics of the resulting translations can be captured using the
ao-process semantics as in the case of promoters. Consider, for instance, the net
in Figure 7 which models a system where the producer can cancel the production
of items only if there is no consumer waiting for them.

A possible free-step sequence is {a}{a, t}{t}{c} and the construction of the
corresponding ao-process is illustrated in Figure 7. Note that activator arcs
rather than inhibitor arcs are used to test for the holding of conditions. Two
activator arcs are used to represent the test for the presence of two tokens in the
place s. This ensures that place r is empty since in the PTLI-net of Figure 7 the
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Fig. 7. PTLI-net of the one-producer/two-consumers system with considerate pro-
ducer, and constructing a process net corresponding to {a}{a, t}{t}{c}.

total number of tokens in places s and r is always equal to 2. In Petri net termi-
nology places like that are called complementary and the modelling of inhibitor
arcs in a process semantics is then rather straightforward. In case a complement
for a place like r cannot be found, a more elaborate construction can be used to
achieve the desired effect [12, 13]. Since the causality semantics of PTLI-nets is
based on ao-processes, it takes into account weak causality as for PTLA-nets.

Permeable membranes The new kind of reaction rule allowed here is lhsr →
rhsr /τ . The special symbol τ indicates that this rule, when executed, causes its
associated enclosing membrane to become ‘thick’ or non-permeable, and no ob-
ject can pass through it anymore [22]. To render this feature within the Petri
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net model, we introduce a special, initially empty, place permi associated with
the membrane i. A directed arc is added to permi from those transitions which
correspond to rules which make membrane i thick (thus there may be several
transitions which can put tokens into the control place permi). Then each tran-
sition t which models a reaction rule r′ transferring objects through membrane
i, is connected with permi using a simple inhibitor arc. Hence, as long as no
transition which places a token into the control place permi is executed, transi-
tions transferring objects through the membrane i are possible. However, once
there is at least one token in permi, transitions corresponding to rules like r′

can no longer be executed as no transition can remove tokens from permi. As
a result, PTLI-nets with the associated ao-processes are sufficient to model the
effect of the non-permeability of membranes.

Dissolving membranes To dissolve membranes, reaction rules are used of
the form lhsr → rhsr /δ with δ a special symbol indicating that execution
of this rule causes its associated enclosing membrane (which may not be the
skin) to dissolve [22, 21]. Moreover, all objects present in the compartment are
incorporated into the immediately enclosing compartment, and all the rules as-
sociated to membrane i are rendered inapplicable. The dissolving of membranes
may be modelled by a combination of activator and inhibitor arcs. Take, for
example a membrane system with four membranes, arranged into a line-like tree
1 → 2 → 3 → 4. Assume further that there are three dissolving rules: r′ associ-
ated with 2, r′′ associated with 3, and r′′′ associated with 4. Then we add three
control places for keeping information about dissolved membranes: diss2, diss3
and diss4 which are initially empty and each has an incoming directed arc from
the transitions corresponding respectively to r′, r′′ and r′′′.

Suppose now that we need to translate a rule r : a → aa associated with
membrane 2. To achieve the desired effect, we introduce three transitions with
locality 2: tr2 with pre-multiset {(a, 2)} and post-multiset {(a, 2), (a, 2)}; tr3 with
pre-multiset {(a, 3)} and post-multiset {(a, 3), (a, 3)}; and tr4 with pre-multiset
{(a, 4)} and post-multiset {(a, 4), (a, 4)}. Then we add an inhibitor arc between
diss2 and each of these three transitions, as well as three activator arcs: between
tr3 and diss3, t

r
4 and diss3, t

r
4 and diss4. In this way, tr4 can be executed only if

the dissolution rules r′′ and r′′′ have happened, but r′ has not. Note that such
a translation can properly render even a simultaneous application of multiple
instances of the dissolution rules. Process semantics of the resulting Petri net is
a combination of those of PTLA-nets and PTLI-nets.

5 Concluding remarks

A main advantage of process semantics is that it provides a very compact rep-
resentation of behaviour. This feature has been exploited in the development
of efficient model checking algorithms [18], where issues relating to reachabil-
ity of certain configurations and termination (or deadlock) of a system can be
addressed.
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A number of relevant behavioural issues can be efficiently investigated given
a process notion for membrane systems. For example, one can check for the pres-
ence of certain molecules (also in specific compartments), by suitably adapting
the notion of reachability in a process net. In some cases, it might be impor-
tant to know whether local computations within compartments (and across the
whole system) are independent of each other, and answering this kind of question
could amount to checking for the causal links between various events present in
processes.

There are several possible directions for future work. The first is to com-
plete the development of the theory of barb-processes making it fit into the
semantical framework of [12], and develop suitable process notions and derived
causality structures for other membrane systems and execution semantics. An-
other important question is a complete characterisation of state graphs generated
by various models of PTL-nets allowing, in particular, to answer the question
whether a given state graph could have been generated by a membrane system
of a given kind (such a characterisation has so far been provided for the class of
safe PTL-nets [17]). Last but not least, once a sound notion of behavioural char-
acterisation of a membrane system has been provided, one can re-introduce the
notion of a successful computation, the result it produces, and the notion of an
input-output relation. However, we now can go further and investigate also non-
successful computations which the computability oriented approach presently
ignores.
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21. Gh.Păun (2000). Computing with Membranes. Journal of Computer and System

Sciences 61, 108–143.
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