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Abstract. Two models of conformon-P systems, one restricted in the
number of input conformons and the other restricted in the number of
input membranes, are proved to induce infinite hierarchies.
The described systems do not work under the requirement of maximal
parallelism and perform deterministic simulations of restricted counter
machines.

1 Introduction

The subdivision of a cell into compartments delimited by membranes has been
an inspiration to G. Păun for the definition of a new class of (distributed and
parallel) models of computation called membrane systems [21].

The hierarchical structure, the locality of interactions, the inherent paral-
lelism, and also the capacity (in the less basic models) for membrane division,
represent the distinguishing hallmarks of membrane systems.

Research on membrane systems, also called ‘P systems’ (where ‘P’ stands for
‘Păun’), has really flourished [22].

One can distinguish three main lines of research concerning membrane sys-
tems:

1. establishing their generative power;
2. using them to develop algorithms for solving computationally hard problems;
3. using them as a modelling platform.

In relation with the first item in the previous list an interesting open problem
was to find a not universal model of P systems that induces an infinite hierarchy
on the number of membranes.

In [12] several models of P systems answering the problem were proposed and
accepted as solutions to it. The models described in [12] (and also in subsequent
related research [14, 13]) were featured with maximal parallelism, i.e. in each time
step the number of performed operations is the maximum number of operations
that can be performed.

Here we consider conformon-P systems without maximal parallelism, i.e. in
each time step the number of performed operations is any number between 1
and the maximum number of operations that can be performed. We prove that
some restricted models of conformon-P systems induce infinite hierarchies on the
number of membranes and on the number of input symbols. These results are
obtained with deterministic simulations of restricted counter machines.



358 P. Frisco

2 Preliminaries

We assume the reader to have familiarity with basic concepts of formal language
theory [11], and in particular with the topic of membrane computing [22]. In this
section we recall particular aspects relevant to our presentation.

2.1 Counter Automata

Non-rewriting Turing machines were introduced by M. L. Minsky in [19] and
then reconsidered in [20] under the name of program machines. After their in-
troduction such machines and some variants of them have been studied under
different names: in [9] they were called (multi)counter machines, in [1] multi-
pushdown machines, in [17] register machines, and in [10] counter automata.
Such devices have counters (also called registers) each of unbounded capacity
recording a natural number or zero.

Simple operations can be performed on the counters: addition of one unit and
conditional subtraction of one unit. After each or these operations the machine
can change state. The main difference between the original models and some of
the subsequent variants indicated above is that the latter may have a read only
tape where the input is recorded. In the model introduced by M. L. Minsky, and
considered by us, such tape is not present and the input is recorded as a number
in one of the counters of the machine. It is shown in [19] that counter automata
can simulate any Turing machine (see also [11, Theorem 7.9]).

Formally a counter automaton with n counters (n ∈ N) is defined as M =
(S, R, s0, f), where S is a finite set of states, s0, f ∈ S are respectively called the
initial and final state; R is the set of rules of the form (sj , l

+, sn) (if in state sj

increase the value of the counter l of 1 and go to state sn), or (sj , l
−, si, sk) (if

in state sj the value of counter l is zero, then go to state sk; otherwise decrease
the value of the counter l by 1 and then go to state si).

Configurations and computations for counter automata are defined as in [19].

2.2 Conformon-P systems

In [6], Frisco & Ji introduced a variant of membrane systems called conformon-
P systems (cP systems). This variant, later studied also in [7, 3–5], is based
on simple and basic concepts inspired by a theoretical model of the living cell
centred around conformon [15, 16].

The concept of conformon was introduced in molecular biology independently
in [8] and [25]. The common part of the two definitions is the conformational
deformation of (macro) molecules in a cell.

A cP system has conformons, a name-value pair, as objects. If V is an al-
phabet (a finite set of letters) and N0 is the set of natural numbers (with 0
included), then we can define a conformon as [α, a], where α ∈ V and a ∈ N0,
we will say that α is the name and a is the value of the conformon [α, a]. If,
for instance, V = A, B, C, . . . , Z, then [A, 5], [C, 0], [Z, 14] are conformons, while
[AB, 21], [C,−15], and [D, 0.5] are not.
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Two conformons can interact according to an interaction rule. An interaction
rule is of the form r : α

n
→ β, where r is the label of the rule, α, β ∈ V , and

n ∈ N0, and it says that a conformon with name α can give n from its value
to the value of a conformon having name β. A rule r can be applied only if
the value of the conformon with name α is greater than or equal to n. If, for

instance, there are conformons [G, 5] and [R, 9] and the rule r : G
3
→ R, then the

application of r leads to [G, 2] and [R, 12].
The compartments (membranes) present in a cP system have a label, every

label being different. Compartments can be unidirectionally connected to each
other and for each connection there is a predicate. A predicate is an element
of the set {≥ n,≤ n | n ∈ N0}. Examples of predicates are: ≥ 5,≤ 2, etc. If,
for instance, there are two compartments (with labels) m1 and m2 and there
is a connection from m1 to m2 having predicate ≥ 4, then conformons having
value greater than or equal to 4 can pass from m1 to m2. In a time unit any
number of conformons can move between two connected membranes as long as
the predicate on the connection is satisfied. Notice that we have unidirectional
connections that is: m1 connected to m2 does not imply that m2 is connected
to m1. Moreover, each connection has its own predicate. If, for instance, m1

is connected to m2 and m2 is connected to m1, the two connections can have
different predicates.

Maximal parallelism, i.e. the fact that in each time step the number of per-
formed operations is the maximum number of operations that can be performed,
feature present in most of the variants of P systems, is absent in cP systems. In
each time step of a cP systems the number of performed operations is any num-
ber between 1 and the maximum number of operations that can be performed.

A computation halts when one (any) conformon is present in a specific (ac-
knowledgement) membrane. When this happens no operation is performed even
if it could.

2.3 Some modules for conformon-P systems

In the following we will use the concept of module: a group of membranes with
conformons and interaction rules in a cP system able to perform a specific task.

An example of module is a splitter [3]: a module that, when a conformon [X, x]
with x ∈ {x1, . . . , xh}, xi < xi+1, 1 ≤ i ≤ h − 1 is associated with a specific
membrane of it, it may pass such a conformon to other specific membranes
according to its value x. In Figures 2 and 3 splitters are depicted by a thicker
line, their label starts with spl, and their edges have ‘=’ as predicate.

Some of the links between membranes present in the cP systems depicted
in Figures 2 and 3 have predicates of the kind [A, a] (a conformon). This is a
shorthand for a separator module [3]: when conformons of type [Xi, x], 1 ≤ i ≤
h, x ≥ 1 are associated with a specific membrane of it, a separator may pass
them to specific different membranes according to their name content. So if there
is an edge between membrane 1 and membrane 2 having [A, a] as predicate, it
means that only the conformons [A, a] can pass from membrane 1 to membrane
2.
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The combination of splitters and separators allows us to define strict interac-

tion rule: A(α) γ
→ B(β) where α, β, γ ∈ N0, meaning that a conformon with name

A can interact with B passing just γ only if the value of A and B before the
interaction is α and β respectively. The detailed module for strict interaction is
depicted in Figure 1. Notice that in a strict interaction just γ is passed even if
the value of A could be decreased by any multiple of γ.

Similarly interactions of the kind A
γ
→ B(β) and A(α) γ

→ B can be defined.

[A, α] [B, β]

[A, α]

A
γ
→ B

B
γ
→ A

[B, β]

[B, β + γ][A, α − γ]

[A, α − γ] [B, β + γ]

Fig. 1. A detailed strict interaction

In Figures 2 and 3 a forward slash (/) indicates different possibilities for
conformons’ values, predicates, etc. Moreover, circles with a number indicate
membranes having that number as label.

3 Infinite hierarchies

The search for a non-Turing-complete model of P system for which the number
of membranes induces an infinite hierarchy on the computation that can be
performed by such system was raised in [22]. Moreover, a prize on the description
of such system was advertised in [26].

Candidate solutions to this problem were reported in [2, 18], but they were
based on definitions that were considered too restrictive, so they were not ac-
cepted as solutions.

In [12] several models of P systems answering the problem were proposed and
accepted as solutions to it. There restricted communicating P system (RCPS) and
restricted counter machines (RCM) were defined. A RCM is a counter machine
which is restricted in its operations: it can increase the value of a counter, say
C, only if it decreases the value of another counter, say D at the same time. The
counters C and D are said to be connected. The research presented in [12] was
followed by [14, 13] where infinite hierarchies on the number of symbols or on
the number of membranes on the computational power of (restricted) variants
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of P systems were presented. These studies concerned models of P systems with
maximal parallelism.

In the following sections we will describe how two variants of P systems with-
out maximal parallelism, basic conformon-P system with restricted features, can
induce infinite hierarchies on the computation they can perform. These results
are obtained with a deterministic simulation of RCPS.

With deterministic simulation we mean that if the simulated RCM is deter-
ministic, then there will be an isomorphism between the sequence of configura-
tions in the computation of the RCM and some configurations in the basic cP
system. This does not mean that in the basic cP system the operations allowing
the transition from the simulation of one configuration to the one that deter-
ministically comes after it follow a deterministic path, actually the cP systems
defined in the following are non-deterministic. These concepts will be discussed
in more details in Section 4.

If the simulated RCM is non-deterministic (one state can be followed by
more than one), then in a similar way the simulating basic cP system will be
non-deterministic.

3.1 Hierarchy on the number of membranes

In this section we consider conformon-restricted basic cP systems, i.e. basic cP
systems having a conformon with a distinguished name, let us say l, and such
that only some membranes (called input membranes) contain only l conformons
in the initial configuration (this restrictions is equivalent to the one imposed to
the RCPSs presented in [12], where only the object o is used to store the value
of the simulated RCM).

Conformon-restricted basic cP systems are accepting devices: a computation
is a finite sequence of configurations with the initial configuration having some l

conformons in the input membranes (and no conformons in the acknowledgement
membrane), while the last (final) configuration is the only one in the sequence
having one (any) conformon in the acknowledgement membrane. As customary
in cP systems, when a final configuration is reached no operation is performed
even if it could. If for an input there is such a computation, then we say that
the conformon-restricted basic cP system accepts the input.

Conformon-restricted basic cP systems are equivalent to RCM.

Lemma 1. Conformon-restricted cP systems can perform a deterministic sim-
ulation of a RCM M = (S, R, s0, f) with two (connected) counters.

Proof. First we explain the general idea, then we will go into the details of
the proof. Let us assume that M has two counters: c1 and c2 whose content
is encoded into the value of one conformon l initially present in membrane 5
and another initially present in membrane 4. We will refer to the former of this
conformon with l(m5) and with l(m4) to the latter. Moreover here we concentrate
only on the operations performed on the value of l(m5) knowing that the value



362 P. Frisco

of l(m4) changes in the opposite way (as the two counters are connected). If the
value of counter c1 is 0 (1), then also the value of l(m5) is 0 (1, respectively); if
the value of c1 is x > 1, then the value of l(m5) is 2(x − 1) + 1. This means that
if the value of c1 is 0 and it is increased by 1, then the value of l(m5) is increased
also by 1; if the value of c1 is bigger than 1 and it is increased by 1, then the
value of l(m5) is increased by 2. Similarly for a subtraction: if the value of c1 is
1 and it is decreased (by 1), then the value of l(m5) (is 1 and it) is decreased by
1; in all the other cases the value of l(m5) is decreased by 2.

The cP system is aware of the value of the c1 counter through some ‘state’
conformons (defined later on). If the value of the c1 counter is 0, then the ‘state’
conformon will carry this information and no further subtraction will be sim-
ulated until an addition is performed on that counter. If the value of the c1

counter is bigger than 0, then subtractions can be simulated.

In this way the number of ‘state’ conformons is increased by |S| × n × 2
(where |S| is the number of states and n is the number of counters of M), but
the resulting cP system performs a deterministic simulation (and can be com-
puted in polynomial time).

Now we will explain the cP systems in details; during this proof we will refer
to Figures 2 and 3.

The initial configuration of the cP system (identified by the conformons in
bold in Figures 2 and 3) is: for each state n of the simulated RCM there are con-
formons [ŝn, 0] and [ŝ=0

n , 0] present in membrane 1, [s′n, 0] in membrane 8, [s̄=0
n , 0]

in membrane 20, [sn, 0] and [s=0
n , 0] in membrane 25, and [s̈n, 0] in membrane 29.

All these s conformons are called ‘state’ conformons as they are associated with
the states of M . Membranes 4 and 5 (input membranes) contain the conformon
with name l whose value reflects the content of the two counters in M (as indi-
cated above). The remaining of the initial configuration is: [c, 1] in membrane 2,
[c̄, 0] in membrane 6, [z, 6] in membrane 10, [k, 0] in membrane 16, [w, 4] in mem-
brane 18, and [v, 1] in membrane 22. The rest of the system will be introduced
during the description.

As indicated before, the cP system has two conformons associated with each
state of M : sj in case the value of l(m4) is bigger than 0 and s=0

j otherwise.
Let us assume that the value of l(m4) is bigger than 0 and that M is in state j.
In this case [sj , 30] will be present in membrane 1. If (sj , l

+, sn) ∈ R, then the
value of conformon l(m4) will be increased by 2 (through the conformon c), the
conformon [sn, 30] is generated using part (2 units) of the value of l(m5) (this is
because these two l conformons represent connected counters).

For each rule (sj , l
+, sn) ∈ R the instruction sj

20
→ ŝn is in membrane 1. In

this way the conformons [ŝn, 20] and [sj , 10] are generated and they can pass
(through spl1) to membranes 2 and 3 respectively. In membrane 2 [ŝn, 20] can
give (with strict interaction) 2 to the c conformon and then pass to membrane 3
while the c conformon can pass to membrane 5. After passing 2 units to l the c

conformon can pass back to membrane 2. In membrane 3 [ŝn, 18] and [sj , 10] can
interact such that [sj , 0] and [ŝn, 28] are generated and they can pass to mem-
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brane 25 and 4 respectively. In membrane 4 the value of ŝn can be increased by 2
(taken from the value of l(m5)), when this happens [ŝn, 30] can pass to membrane
25. Through membranes 25, 27, and spl3 [ŝn, 0] and [sn, 30] are generated and
they can pass to membrane 1.

Now we describe how the simulation of one instruction of the kind (sj , l
+, sn) ∈

R is performed when the value of the l counter is 0. In this case [l, 0] can be in
membrane 13 and no l conformon is present in membrane 5. We will see later on
how this happens, for the moment let us take this as a fact. Let us also assume
the conformon [s=0

j , 30] is in membrane 1, this simulates that M is in state j.

As the instruction s=0
j

21
→ ŝn is also present in this membrane, then the con-

formons [s=0
j , 9] and [ŝ=0

n , 21] can be generated and pass to membranes 14 and

6, respectively (through spl1). In membrane 6 [c̄, 2] and [ŝ=0
n , 19] are generated,

afterwards they can pass to membrane 13 and 7, respectively. In membrane 13
[c̄, 2] can give 1 to [l, 0], when this happens [l, 1] can pass to membrane 5, while
[c̄, 1] to membrane 7. Notice that in this way the value of l has been increased
by 1 (and not 2). When [ŝ=0

n , 19] and [c̄, 1] are both in membrane 7 they can
interact such that [ŝ=0

n , 20] and [c̄, 0] are generated and they can pass to mem-
brane 8 and 6 respectively. When [ŝ=0

n , 20] is in membrane 8, then the ‘state’
conformon [sn, 30] is generated (indicating that the value of the counter is bigger
than 0). This process (similar to what we have described) happens between the
membranes 1, 4, 8, 14, 15, 24, 25, 27 and spl2 and at the end of it [sn, 30] and
[ŝ=0

n , 0] are in membrane 1.

Now we describe how an instruction of the kind (sj , l
−, si, sk) is simulated. In

case the ‘state’ conformon is s=0
j , then the counter is empty and the next state is

sk. This is simulated by the rules s=0
j

16
→ ŝ=0

k present in membrane 1 and allowing

[s=0
j , 14] and [ŝ=0

k , 16] to be generated. The creation of [sk, 30] (similar to what
described before) is performed through the membranes 25, 32, 33, spl1, and spl2.

In case the ‘state’ conformon is sj and an instruction of the kind (sj , l
−, si, sk)

is simulated, then two situations are possible. If the value of l(m5) is 1 (indicating
that the counter contains 1), then 1 has to be subtracted by l(m5) and the next
‘state’ conformon has to be s=0

i (indicating that the counter is empty); if the
value of l(m5) is bigger than 2 (indicating that the counter contains at least 2),
then 2 has to be subtracted by l(m5) and the next ‘state’ conformon has to be
si (indicating that the counter is not empty).

If [sj , 30] is present in membrane 1 and the instruction (sj , l
−, si, sk) is sim-

ulated, then [sj , 11] and [ŝi, 19] are generated and they can pass to membranes
23 and 5 respectively. In membrane 5 ŝi decreases the value of l of 1 (this is
always possible) and then [ŝi, 20] can pass to membrane 16. Here it interacts
with [k, 0] so that [k, 11] and [ŝi, 9] are created and they can pass to membranes
5 and 17 respectively. The role of [k, 11] is to subtract 1 from the value of l. If
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this is possible then [k, 12] will also pass to membrane 17, if this is not possible
then the k conformon will stay in membrane 5 until the z conformon will be also
there.

In case after the interaction with ŝi the value of l becomes 0, then it can
pass to membrane 10 and here interact with [z, 6]. As a result of this and other
interactions (involving membranes 11 and 12) [l, 0] (originally in membrane 4)
can pass to membrane 13 (this fact was considered above), while [z, 6] can pass
to membrane 17. It should be clear now that in membrane 17 either [k, 12] or
[z, 6] is present, they cannot be present together.

If [k, 12] is present, then the 2 units taken from l(m5) are passed to l(m4) and
[si, 30] is generated and it can pass to membrane 1; if instead [z, 6] is present
in membrane 17, then the unit taken from l(m5) is passed to l(m4) and [s=0

i , 30]
is generated and it can pass to membrane 1. These processes, similar to others
described above, happen in between the membranes 17-33 (with the exception
of membrane 26).

If j is a final state for M , then either [sj , 30] or [s=0
j , 30] will be present in

membrane 1. When this happens, then the application of either sj
18
→ ŝf or s=0

j
18
→

ŝf will create a conformon with value 18. This conformon can pass to membrane
26 (the acknowledgement membrane) halting in this way the computation. �

The just given constructive proof can be used to create conformon-restricted
cP systems that can perform a deterministic simulation of RCMs (with any
number of connected counters).

Let us assume that a specific RCM has m counters C = {c1, . . . , cm} each
with an initial value. Then it is possible to build a conformon-restricted cP
systems Π ′ having l conformons present in m different input membranes. Con-
sidering the proof of Lemma 1 this seems to be a must as collecting more than
one conformon with name l in the same membrane would not allow the system
Π ′ to perform a simulation on the RCM (we will discuss this point in Section
4). The system Π ′ would be such that every time the value of an l conformon
is increased (decreased), then the one of its connected counter (for the partic-
ular simulated instruction) is decreased (increased, respectively) by the same
amount. The information on the connected counter can be present in the name
or in the value of the ‘state’ conformons (similarly to what was done in the
previous proof).

So we can state:

Corollary 1. Conformon-restricted cP systems can perform a deterministic sim-
ulation of RCMs.

Here is the reverse of this inclusion:

Lemma 2. A RCM with m counters can simulate a conformon-restricted cP
system having m input membranes.

Proof. In the initial configuration the value stored in the m counters is the value
of the l conformons present in the initial configuration of the cP system. The
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rest of the description of the cP system is encoded into the finite control of the
RCM.

The increase/decrease of the value of the l conformons is split into a sequence
of increases/decreases of 1. Every time 1 is subtracted by the value of an l

conformon, then the value of the associated counter is decreased by 1 and the one
of the connected counter is increased by 1. Chains of coupled increase/decrease of
connected counters simulate the passage of value between different conformons.
Similarly when the value of an l conformon is increased.

When the simulation of a conformon passing to the acknowledgement mem-
brane is simulated, then the RCM goes into a final state. �

The fact that RCMs induce an infinite hierarchy on the number of counters
is proved in [12]. Considering this, we can state:

Theorem 1. Conformon-restricted cP systems induce an infinite hierarchy on
the number of membranes.

3.2 Hierarchy on the number of symbols

In this section we consider membrane-restricted basic cP systems, i.e., basic cP
systems in which the number of input membranes is restricted to one and the
set of names of input conformons is bounded.

An initial configuration is such that some input conformons are present in
the input membrane, no input conformon is present in the remaining mem-
branes, and the acknowledgement membrane is empty. We say that a membrane-
restricted basic cP systems accepts an input if there is a finite sequence of con-
figurations starting from an initial configuration and ending with a (final) con-
figuration (being the last one in the sequence) in which one (any) conformon is
in the acknowledgement membrane. As customary in cP systems, when a final
configuration is reached no operation is performed even if it could.

Lemma 3. Membrane-restricted cP systems with two input conformons can per-
form a deterministic simulation of a RCM M = (S, R, s0, f) with two connected
counters.

Proof. (sketch) The proof follows the one of Lemma 1. Let us assume that the
names of the input conformons are l1 and l2 and that their initial value reflects
the initial content of the counters in M (in the same way as it is done in the
proof of Lemma 1).

The operations performed on l1 and l2 are similar to the ones performed to
the l conformons in the proof of Lemma 1.

The simulation of an instruction of the RCM changing its state into a final
one lets a conformon to go into the acknowledgement membrane halting in this
way the computation. �

Let us assume that a specific RCM has m counters C = {c1, . . . , cm}, then it is
possible to build a membrane-restricted cP system having input conformons with
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name c1, . . . , cm in the input membrane. The equivalence between the number
of counters and the number of different names of input conformons seems to
be a must (we will discuss this point in Section 4). The membrane-restricted
cP system would be such that every time the value of an input conformon is
increased (decreased), then the one of its connected counter (for the particular
simulated instruction) is decreased (increased, respectively) by the same amount.
The information on the connected counter can be present in the name or in the
value of the ‘state’ conformons.

So we can say:

Corollary 2. Membrane-restricted cP systems can perform a deterministic sim-
ulation of RCMs.

Here is the reverse of this inclusion whose proof follows the one of Lemma 2:

Lemma 4. A RCM with m counters can simulate a membrane-restricted cP
system having m input conformons.

If we now consider that RCMs induce an infinite hierarchy on the number of
counters [12], then we have:

Theorem 2. Membrane-restricted cP systems induce an infinite hierarchy on
the number of input conformons.

4 Final remarks

At the beginning of Section 3 we defined deterministic simulation and we in-
dicated that the restricted cP systems used by us are non-deterministic even if
they can perform deterministic simulations.

The non-determinism present in the considered cP systems arises from the
fact that some operations can be performed in parallel. If, for instance, the
operations A and B can be performed in parallel in a cP system, then (as maximal
parallelism is not present) A can be applied before B, or B can be applied before
A, or A and B can be applied at the same time.

We are going to investigate if it is possible to have the results presented in
this paper with deterministic cP systems. In this respect we will consider to use
Petri nets [23] as done in [4].

It is also relevant to notice that the use of separator modules on the the
conformons representing counters let the sum of these conformons not to be
constant but to fluctuate. This fluctuation is due to the separator module used
by (variants of) strict interactions (see Figure 1 and [3, Figure 2]). Because of the
way the cP systems described in this paper have been devised, these fluctuations
do not interfere with the simulations performed by them.

An essential element in the proof of Lemma 1 is the presence of connected
loops. Here with loop we mean that, during the simulation, some conformons
cycle in between some membranes. In the proof of Lemma 1 the k conformon



Infinite Hierarchies of Conformon-P Systems 367

loops between membranes 16, 5, and 17 or between membranes 16, and (5, 9)+

(the superscript + indicates that k can keep passing between membranes 5 and
9), while the z conformon loops between membranes 10, 11, 12, 17, 5, 9, and 19.

Two loops are connected if one can be completed only if the other is taking
place. In the proof of Lemma 1, for instance, the k conformon can complete the
16, (5, 9)+ loop only when the z conformon is traversing its loop.

We think that loops are necessary in a system lacking maximal parallelism
in order to have some computational power. We also think that the number of
loops and their connections can be a measure of computational complexity of
system lacking maximal parallelism. The concepts of (connected) loops seems to
us to be related to the ones of concurrent steps and subsystem in Petri nets [23].
Moreover, this reminds us of the promoter/repressor mechanism present in cells
during protein synthesis [24, chapter 29]. We count to investigate this further.

Deterministic simulation can be also used to obtain other results. In [3] The-
orem 3 states that a cP system with unbounded total value can perform a (non-
deterministic) simulation of a program machine (meaning that in that proof
0-gamble - see [4] - is present). Considering the proof of Lemma 1 we can then
state:

Theorem 3. Conformon-P systems with unbounded value can perform a deter-
ministic simulation of program machines.

We conclude this paper posing a problem related to variants of P systems
inducing an infinite hierarchy. The proofs on the presence of such hierarchies are
based on a mapping from the space of configurations of the simulated system
(for instance, an RCM) to the considered P system model. In this mapping the
content of the counters of the RCM is represented, for instance, by the number
of objects in the P system.

Is it possible to have another mapping such that the infinite hierarchy is not
induced?

In Section 3.1 we wrote: “... this seems to be a must as collecting more than
one conformon with name l in the same membrane would not allow the system
Π ′ to perform a simulation on the RCM.”.

This ‘must’ has no proof (we were not able to give one), even if our common
sense suggests that it is not possible to do otherwise.
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→ ŝ=0

n

7

sj
20
→ ŝn
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→ ŝf

[s′

n, 5]

s′

n

4
→ ŝn
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[ŝ=0

k , 5]

32

s=0

j

14
→ s=0

k

[s=0

k , 16]

[s=0

j , 14]

33

ŝn
9
→ sn ŝ=0
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[ŝ1, 5]

21

[s=0

i , 20]

s=0

i

1
 v

[v,1]

22

[s̄=0

i , 7] [s=0

i , 8]

s̄=0

i

7
→ s=0

i

28

[si, 10]

ŝi
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