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Abstract. During these years stochastic algorithms have deserved much
attention from the computational biology research communities. In this
paper we derive a hybrid version of the formerly known Metabolic Al-
gorithm that is enriched with stochastic features, whose impact on the
dynamics of the system is as prominent when the amount of metabo-
lite becomes smaller. This hybrid procedure represents a first attempt to
let the Metabolic Algorithm deal with low concentrations of substances
according to a non-deterministic policy.

1 Introduction

The simulation of a metabolic process relies on several, sometimes well-establi-
shed methods and algorithms that either compute its evolution deterministically,
as it happens with methods discretizing a Reaction Rate Equation, or stochas-
tically, as it happens with algorithms solving or approximating the Chemical
Master Equation [1, 2]. The latter algorithms are quite accurate but computa-
tionally expensive, given the individual handling they must do of each molecule,
and provided that only several repeated realizations of the same simulation in
principle provide sufficient information about the expected behavior of a system.
For this reason, approximated versions of these algorithms have been proposed
in order to diminish the computational burden of the stochastic approach [3].

Less is known about the possibility to gain efficiency, without loosing too
much in accuracy, by using hybrid algorithms capable of mixing the determinis-
tic and the stochastic paradigms together. Such an approach is inherently hard
to deal with due to the theoretical and technical difficulties that arise when a
system, whose kinetic rates range among different scales, is split into a multiple
observation-level model accounting for different computation strategies depend-
ing on the level of observation [2]. Nevertheless, such an approach has been
already pursued for simulating complex biochemical systems [4, 5] and also in
the processing of proteomic data1 [6].

Our work here is still far from adding substantial knowledge about this pos-
sibility. Despite this we will show how a hybrid strategy to biochemical system

1 An interesting introduction to the use of hybrid algorithms in computational biology
can be found online at http://www.bioinfo.de/isb/2004/04/0024/main.html.
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modeling can be implemented within MP systems, by extending their determin-
istic evolution mechanism in order to include randomness that is always present
in biochemical systems.

Metabolic P (MP) systems [7, 8] are rooted in the theory and formalism of
P systems [9, 10], to which they couple a deterministic computational strategy
called P Metabolic (MP) Algorithm [11, 12, 8]. P systems have been envisioned
to find solutions for several problems [13]. In the meantime they have been a
fertile ground for the birth of stochastic algorithms for the representation of the
evolution of biochemical systems.

The P system community has approached the question of stochastic evolution
in several ways. One strategy is known as Dynamical Probabilistic P systems, and
employs maximal parallelism both at the rule and object level: there, the prob-
ability of tossing a rule is dynamically calculated by starting from the multiset
of objects that are present in the system during a transition, as well as from the
kinetic constant associated to the rule. Another is called Multi-compartmental
Gillespie’s algorithm and its aim is to extend the Gillespie algorithm to a multi-
compartment environment as it happens for P systems having more than one
membrane [1, 14, 15].

By exploiting the versatility of the MP algorithm, we can straightforwardly
integrate a stochastic strategy for choosing the strength of the rules governing
the system evolution, in a way that the smaller the amount of a substance is,
the stronger the effects of randomness. In practice this is made by altering the
deterministic character of the reaction maps proportionally to their magnitude
[8]. In the end of the paper this hybrid algorithm is tested upon traditional case
studies such as the BZ reaction and the Lotka-Volterra dynamics [16, 8, 17, 18].

In the following of the paper we assume the reader to be friendly enough with
the notation and the formalism of MP systems, whose leading ideas are that:

– the system evolves by allocating to each evolutionary rule object amounts
that play the role of reactants, as well as by obtaining from such rules object
amounts that play the role of products;

– nonlinear functions of the state of the system (that is identified by the
amount of every object), called reaction maps, are computed at the beginning
of each system transition for assigning object amounts to the rules.

For further details on MP systems and the MP algorithm (shortly MPA) we
refer the reader to [7, 8].

2 The Algorithm

The idea of the hybrid algorithm is to switch from a completely deterministic
(MPA) to a completely stochastic approach (s-MPA) depending on the size of
the population dealt with by each rule. A threshold τ is used to control the
switch between the two strategies and in this way the whole system becomes
a stochastic-deterministic hybrid system (h-MPA). If the population is small
compared to the threshold, the stochastic strategy should be preferred, otherwise
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the deterministic strategy is able to provide an acceptable approximation of the
dynamics and is thereby preferable.

In principle, for each rule a deterministic or stochastic strategy has to be
chosen according to the size of the population it deals with. Let us suppose to
have a rule r : XY → ... , and to fix a threshold τ . If

min(q(X), q(Y )) < τ

the strategy of application of r is chosen to be stochastic, else it is deterministic—
q(Z) denotes the amount of the species Z present into the system. Note that this
minimum gives the bottleneck of the reaction, but it is different from the limiter
of the standard metabolic algorithm because here we do not take into account
the strength of the rules. A population, then, undergoes a stochastic dynamics
if its size is smaller than the threshold.

Of course, due to cooperation, a population can undergo a stochastic dy-
namics even if it is bigger than the threshold, but it is involved in reactions
dealing with at least one reactant whose total amount in the system is below
the threshold.

What do we mean by stochastic strategy? The idea is to keep a “population
perspective” of the dynamics, as in the spirit of the metabolic algorithm. Ac-
cordingly, a stochastic strategy for the simulation of a rule r with the system in
state s consists in:

i) evaluating the reaction map Fr(s) as in the deterministic MPA;
ii) picking up a random number from a probability distribution depending on

Fr(s), let us call this number v;
iii) applying the rule as in MPA by using v instead of Fr(s) as a reaction map,

where a generic state s can be thought as a vector of concentrations of all the
elements of the system (that are assumed ordered) and it is denoted as s-MPA(s)
(we denote with MPA(s) the purely deterministic evolution of state s).

This pseudo-algorithm gives an intuitive idea of the process, but it does not
simulate properly the application of rule r (for example, we need to specify
stochastic reaction maps of all reactants of rule r). In Subsection 2.3 a full
description of the hybrid algorithm is given. Before entering the description of
the algorithm, another preliminary question need to be addressed.

How do we quantify the dependency of the probability distribution on Fr?
The idea is to respect somehow the shape of the (deterministic) reaction map
in the random choice of the stochastic reaction map. This is because reaction
maps should take into account the features of the interactions between elements
of the system and with this respect it seems reasonable to consider them as
“independent of the scale” and thereby valid also for small populations of objects.
Nevertheless, the generality of the approach allows the modeller to specify a
different shape for the reaction maps employed in the stochastic part of the
algorithm, but since this is not limiting, here we will not exploit this capability.

One possible implementation of the random step (ii) is to generate a random
number v by using a pseudo random sequence generator (PRSG) with a gaussian
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distribution of mean Fr(s) and a suitable variance, allowing a certain degree of
variability in the dynamics.

2.1 PRSG

Standard Matlab (but not only it) provides a primitive for reckoning a (pseudo)
random number chosen from a normal distribution with mean zero and variance
one. If we denote with vnor such a random number when obtained from a normal
distribution, then

vrnd = m + σ · vnor

is a (pseudo)random number chosen from a gaussian distribution with mean m
and variance σ2.

This expression does not necessarily produce positive values. As reaction
maps cannot assume negative values, our PRSG skips eventual negative values.
This strategy introduces a distortion of the gaussian paradigm, and in the future
we will look for a more coherent random generation of numbers.

In all experiments we have used the PRSG to obtain a stochastic reaction
map by starting from a deterministic one Fr evaluated in a certain configuration
s of the system, thereby we have used m = Fr(s) as mean value and (see two
histograms of random sequences of 100000 numbers depicted in Figure 1) with
σ2 = 0.5 · Fr(s)2 as variance.

Figure 1 suggests that σ2 = 0.5 · Fr(s)2 is a possible choice for the variance,
giving enough variability in the distribution of the random number.

2.2 Deterministic, stochastic or both?

A sudden switch from the deterministic strategy (when the algorithm deals with
populations larger than the threshold) to the stochastic one seems to be unrealis-
tic. For this reason the developed strategy configures itself as a continuous switch
between the two strategies, with various degrees of determinism (or stochasticity
as well).

The idea in this case is to use a sigmoid function, whose input is the threshold
and a population value and whose output is the degree of determinism of the
system (i.e., a real value d in the unitary interval [0, 1] determining the rate of
change reckoned by means of the deterministic algorithm). Of course, the value
1 − d is the degree of stochasticity of the system. Given a threshold τ and an
input value x specifying the population size of the species considered, the value
of the determinism degree d produced by the sigmoid function can be computed
as

d =
1

1 + e(10/τ)(τ−x)
(1)

and, as previously said, it gives the degree of determinism (or stochasticity) of
the system. Note that the choice of this sigmoid function is empirical: several
other functions can be employed (for example, the steepness of the sigmoid can
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Fig. 1. Histograms of random sequences of 100000 samples with: mean 123 and variance
0.5 · 1232 (upper left), mean 123, variance 1232 (upper right), mean 42000, variance
0.5 · 420002 (lower left) and mean 42000, variance 420002 (lower right).

be increased by using b > e, such as 8, instead of the Napier’s base e of the
exponential, or it can be decreased by using b < e, such as 2).

In Figure 2 two examples of the sigmoid function (1) are represented; on the
left the threshold τ is set to 5000, whereas on the right it is set to 450. We can
see that when the population size equals the threshold τ we have a strategy
that is half deterministic and half stochastic, for this reason it may be better to
consider the following sigmoid function:

d =
1

1 + 4
20
τ′ (τ ′−x)

(2)

where τ ′ = 0.9τ , that is, the 90% of τ .

This newly defined threshold function is shown in Figure 3 (right). It is
possible to appreciate that when the population size equals the threshold τ the
strategy is deterministic at more than 95%. Although further investigation on
the threshold function is needed, in the experiments described in the next section
the modified sigmoid has been used.
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Fig. 2. Sigmoid function (1): population range 0–100000 τ = 5000 (left); population
range 0–900 τ = 450 (right).
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Fig. 3. Sigmoid function (2): population range 0–100000 τ ′ = 5000 (left); population
range 0–900 τ ′ = 450 (right).

2.3 h-MPA

The idea of the algorithm is to apply each rule in a deterministic way whenever
the population involved in it is bigger than a predetermined threshold; whereas,
a rule is applied in a stochastic way whenever the population it deals with is
below the threshold. For each rule, the total (i.e., not weighted by reaction
maps) amount of the bottleneck is reckoned (the bottleneck of a reaction is the
reactant whose total amount in the system is the lowest one when compared with
the amounts of all other reactants of the rule) and a sigma function is calculated
on it in order to obtain the determinism degree of the rule. Then, according to
this determinism degree, the rule is applied partially in a deterministic way and
partially in a stochastic way.

Let us assume a system specified by means of n rules r1, ..., rn, defined over
the alphabet A, initially in a state s0, and let τ be the deterministic degree
threshold discussed previously. If we denote with d1(si), ..., dn(si) the determin-
ism degrees of each of the n rules (calculated as we will see in a while), we can
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express the dynamics of the system as the sequence s0, s1, ... where a transition
from a generic state si to the next one can be calculated by computing both the
stochastic and deterministic variation for all the rules and then weighting them
according to the corresponding determinism degree. In particular, given a rule rj

with 1 ≤ j ≤ n, its variation induced on the state si, δrj
(si), can be calculated

as:
δrj

(si) = dj(si) ·MPAj(si) + (1− dj(si)) · s-MPAj(si)

where MPAj(si) is the deterministic application of rule rj to the state si while
s-MPAj(si) is the stochastic application of rule rj to the state si.

A transition from a state si to the next one si+1 by means of the hybrid
metabolic algorithm can be described by the following meta-code:

Step 0a: Deterministic reaction maps computation. The set of deterministic
reaction maps is calculated in the current state:

FD
rj

(si) ∀j = 1, ..., n .

Let us denote with FD(si) the set of all deterministic reaction maps in the
state si.
Step 0b: Stochastic reaction maps computation. The set of stochastic reac-
tion maps is calculated in the current state:

FS
rj

(si) = RND(FD
rj

(si), 0.5 · (FD
rj

(si))
2
) ∀j = 1, ..., n

where RND(a, b) denotes a gaussian distributed random number, computed
as seen before, with mean a and variance b, for a, b ∈ R. Let us denote with
FS(si) the set of all stochastic reaction maps in the state si.
Step 1: Single rule variations. Deterministic and stochastic variations of
each rule to each object of the system are computed.
For each couple (rj , X) with j = 1, ..., n and X ∈ A, assuming each rule to
have the form rj = αj → βj :
o) If X 6∈ αj AND X 6∈ βj then set both the deterministic and stochastic

variation induced by rj on X respectively to:

δD
rj ,X(si) = 0

δS
rj ,X(si) = 0

and goto the step o) of the next couple (if any), otherwise goto step i).
i) Calculate the rate dj as:

1. Find the bottleneck of reaction rj :2

X = min
Y ∈αj

q(Y ).

2 Other choices for the bottleneck calculation are also reasonable, as they take into
account the size of the population involved in each rule instead of the global size of
populations, the choice made here simplifies the algorithm.
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2. The total amount of the bottleneck is calculated

x = q(X).

3. The deterministic rate is computed

dj =
1

1 + 4
20

0.9τ (0.9τ−x)
.

ii) Calculate the deterministic variation induced by rj on X, δD
rj ,X(si) as in

the standard metabolic algorithm with reaction maps taken from FD(si).
iii) Calculate the stochastic variation induced by rj on X, δS

rj ,X(si) as in the
standard metabolic algorithm with reaction maps taken from FS(si).

Step 2: Global variations and system update. The global deterministic ∆D
X(si)

and stochastic ∆S
X(si) variations are calculated by the weighted sum of all

single rules contributions, ∀X ∈ A:

∆D
X(si) =

n∑
j=1

δD
rj ,X(si) · dj

∆S
X(si) =

n∑
j=1

δS
rj ,X(si) · (1− dj)

Xi+1 := Xi + ∆D
X(si) + ∆S

X(si)

where Xi denotes the amount of species X in configuration si.

Note that in the case of systems dealing with populations instead of concentra-
tions a rounding policy has to be devised.

3 Case Studies

The case studies presented in this section have been implemented using Matlab,
and resulted in numerical simulations whose computation tipically took some
seconds.

The first case study is the BZ reaction, that is discussed in two distinct
variants, while the second case study is the Lotka-Volterra predator-prey system.

3.1 BZ (model 1)

The first Brusselator model is composed by the following set of rewriting rules
and deterministic reaction maps:

r1 : λ −→ X Fr1 = 10
r2 : XXY −→ XXX Fr2 = 900 q(X)2q(Y )
r3 : X −→ Y Fr3 = 200 q(X)
r4 : X −→ λ Fr4 = 5 q(X).
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Fig. 4. Two realizations of a hybrid simulation of the Brusselator (τ = 2000, deter-
ministic rate of r1 set to 0.5). Corresponding phase space representations are depicted
on the lower part of the figure.

The initial amount of objects X and Y are set respectively to 50 and 5000
and both procedures deal with integer objects (the contribution of all rules are
floored to the nearest small integer). The deterministic rate that multiplies the
variation obtained by the rule is a real value in general, hence for this reason we
can have real values in the dynamics.

Note that, due to the fact that λ is not a population, we need a strategy to
deal with rule r1, that is, we can decide to have a either a completely deter-
ministic feeding of the system, a completely stochastic one, or every degree of
determinism.

The algorithm can provide several behaviours depending on the value of the
determinism threshold τ . It can show a completely deterministic dynamics if
the threshold of determinism is set to 0, or conversely a completely stochastic
one, in the case of the threshold τ → ∞ (or at least larger than the maximum
population size in the whole simulation) [8, 11]. Hybrid solutions are obtained
for intermediate thresholds (see Figure 4, where τ = 2000 and, on the right, we
can observe that the dynamics shows a slight stochasticity in the first instants
and then the oscillation is suppressed).
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Fig. 5. Two realizations of completely stochastic simulations of the Brusselator (τ =
1099). Corresponding phase plots are shown in the lower figures.

3.2 BZ (model 2)

The second Brusselator model deals with the following set of rewriting rules and
deterministic reaction maps:

r1 : A −→ AX Fr1 = 10−3

r2 : X −→ Y Fr2 = 50
r3 : Y −→ X Fr3 = 2.5 · 10−5 q(X)2

r4 : X −→ λ Fr4 = 5
r5 : X −→ X Fr5 = 1000
r6 : Y −→ Y Fr6 = 1000
r7 : A −→ A Fr7 = 1000.

Initial amounts for X and Y are respectively set to 1000 and 2000, while the
constant feeding element A has an amount set to 5 · 106. The rate parameters
have been taken from [16]. Moreover, rounding has not been used.

Two completely stochastic realizations are depicted in Figure 5, where the
phase space is shown in the lower plots. Two hybrid realizations using different
thresholds are depicted in Figure 6.
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Fig. 6. Two hybrid simulation of the Brusselator (τ = 1000 and τ = 3000 respectively
for the left hand part and right hand part of the figure). Corresponding phase plots
are shown in the lower figures.

3.3 Lotka-Volterra

The Lotka-Volterra metabolic rewriting system is composed by the following set
of rewriting rules and deterministic reaction maps [18]:

r1 : X
k1−→ XX Fr1 = 3 · 10−3

r2 : XY
k2−→ Y Y Fr2 = 4 · 10−6 ·max(X(k), Y (k))

r3 : Y
k3−→ λ Fr3 = 3 · 10−3 q(X).

Moreover, the initial populations of both predators (Y ) and preys (X) are set to
900 and, for each species, an inertia equal to 1 is also considered. Note that no
rounding in the population dynamics is performed in this case. As usual, we can
have completely deterministic dynamics [18] as well as a completely stochastic
dynamics (see Figure 7). Hybrid behaviours can be obtained for intermediate
values of τ (see Figure 8). An interesting case has arisen in a simulation using
τ = 800: in this simulation the randomness has led the system to rapidly fall
toward the steady-state. Of course, this behaviour is not directly related to the
choice of the threshold but, rather, to the random choices performed in the
simulation.
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Fig. 7. Completely stochastic simulation of the LV system (τ = 1020), both evolution
(left) and phase (right).

4 Conclusion

Although both deterministic and stochastic models for the simulation of bio-
chemical systems have come to a good maturity, few has been done in the di-
rection of hybrid algorithms. We have shown that this issue potentially leads
to interesting dynamic representations, especially if coupled with the inherently
versatile modeling formalism provided by MP systems.

Besides this, much still has to be done to make this strategy really com-
petitive. Possible improvements in the short run may lead to a more suitable
definition of the sigmoid function, and to a better tuned PRSG. In the medium
and long run, alternative formalization of the h-MPA can be envisioned. In par-
ticular, a procedure accounting for two reaction maps for every rule, the former
related to the deterministic, the latter to the stochastic behavior, may lead to
rich realizations of a system evolution.
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