
P Finite Automata and Regular Languages over

Countably Infinite Alphabets?

Jürgen Dassow1 and György Vaszil2

1 Otto-von-Guericke-Universität Magdeburg
Fakultät für Informatik

PSF 4120, D-39016 Magdeburg, Germany
dassow@iws.cs.uni-magdeburg.de

2 Computer and Automation Research Institute
Hungarian Academy of Sciences

Kende utca 13-17, 1111 Budapest, Hungary
vaszil@sztaki.hu

Abstract. We examine the class of languages over countably infinite al-
phabets characterized by a class of restricted and simplified P automata
variants, which we call P finite automata, and show that these classes
possess several properties which make them perfect candidates for being
the natural extension of the notion of finite automata and that of regular
languages to infinite alphabets. To this aim, we also show that P finite
automata are equivalent to a restricted variant of register machines, pro-
viding a more conventional automata theoretical characterization of the
same infinite alphabet language class.

1 Extending the Chomsky Hierarchy to Infinite
Alphabets

We wish to use the framework of P automata to combine two approaches used
earlier to handle languages over infinite alphabets with devices having a finite
description, that is, with devices which can be described without the necessity of
specifying an infinite set of transition rules, and to define in some reasonable way
the infinite alphabet counterparts of classical language classes from the Chomsky
hierarchy.

One of these approaches can be summarized as enabling the device to re-
member a finite number of symbols from the infinite alphabet. If we think of
machines accepting strings of symbols, they might be equipped with a certain
kind of data structure made of memory slots capable of storing arbitrary symbols
of the infinite alphabet, and with the ability to make equality checks between the
input symbols and some parts of the memory contents. Then, if we also create
rules to manipulate the contents of the memory, the transitions can be given by

? Research supported in part by the Hungarian Scientific Research Fund “OTKA”
grant no. F037567 and by the Alexander von Humboldt Foundation of the Federal
Republic of Germany.

324 J. Dassow and G. Vaszil

reference to a finite subset of the memory slots and not to the input symbols
themselves.

An example of this approach is [3] where the authors extend the notion of reg-
ular languages to infinite alphabets by defining them as sets of strings accepted
by so called finite memory automata, finite automata equipped with a finite set
of memory registers capable of storing symbols of the input. The transitions
which can also manipulate in some simple way the contents of the memory, are
based on the internal state of the finite control unit, and the equality (or non-
equality) of the input symbol with the contents of certain registers. A similar
idea is used in [1] to extend the notion of pushdown automata and of context-
free grammars to infinite alphabets. Since equality check in this framework is
“easy”, the language {a2n

i | i, n ≥ 1} over the alphabet Σ = {ai | i ≥ 1}, for
example, can easily be accepted by finite memory automata. On the other hand,
to capture relationships of the symbols other than equality or non-equality is
“hard”, the language {a2i | i ≥ 1} over Σ, for example, cannot be characterized
with any of the above mentioned devices.

The second approach for handling infinite alphabets can be summarized as
coding the symbols using a finite alphabet and then working with the corre-
sponding code-word language (over a finite alphabet) instead of the original
language (which is over an infinite alphabet).

As an example, we could mention [5] where a symbol ai from the infinite
alphabet Σ = {ai | i ≥ 1} is coded as the word 0i1 over the binary alphabet
{0, 1}, and then a language over the infinite alphabet Σ is defined to be regular
(or context-free), if the corresponding code-word language over the binary alpha-
bet {0, 1} is, in the conventional sense, regular (or context-free). This approach
has some advantages, the language {a2i | i ≤ 1}, for example, which cannot be
characterized with finite memory automata, is clearly regular according to this
definition. On the other hand, the equality check of symbols proves to be “hard”
in this framework, the language {aiai | i ≥ 1} for example, is in this sense a
non-regular, or {aiaiai | i ≥ 1} is a non-context-free language.

In the present paper, we propose the combination of the previously described
approaches: Instead of just coding or just remembering symbols, we propose to
remember the codes of symbols. In some sense, this can not only be seen as a
proposal which eliminates certain shortcomings of the above outlined concepts,
but also as a more “realistic” description of the act of remembering a symbol
from an infinite alphabet: The remembered object needs to be somehow denoted,
and for this, a finite collection of signs, elements of a notation, can be used, thus,
when we think of storing symbols, we really mean to think of storing code-words
corresponding to symbols, and exactly this fact is expressed in our proposed
model.

To explore these ideas, we will use the framework of membrane systems,
or more precisely of P automata, which provide a very natural machinery to
capture the above described concepts. The introduction of P automata in [2] was
motivated by the idea of using P systems as language acceptors while keeping
the machinery as simple as possible. The objects in a P automaton may move

P Finite Automata over Countably Infinite Alphabets 325

through the membranes from region to region, but they may not be modified
during the functioning of the systems, and furthermore, the “words” accepted by
a P automaton correspond to the sequences of multisets containing the objects
entering from the environment in each step of the evolution of the system.

Although the number of different objects used by the system, that is, the
number of elements of the object alphabet of the system is finite, the number of
possible multisets of objects entering the skin membrane in one computational
step can be infinite. The reason for this property lies in the parallelism of the
application of the evolution rules (which are communication rules in this case).
The number of objects manipulated by one rule is finite, but since they can be
applied in any number of “copies”, the number of objects affected by the rules
in one computational step can be arbitrary high, thus the potential number
of objects requested by the rules of the skin membrane to enter the system is
unbounded. Because of the infinite number of potential input multisets, it is
rather natural to consider a P automaton as a machine working with strings of
symbols over infinite alphabets.

In the following we define a quite restrictive class of such P automata, which
we call P finite automata, to obtain a reasonably simple, but on the other hand,
a still rather complex class of languages over countably infinite alphabets, and
examine how appropriate candidate this language class is for being called the
“infinite alphabet counterpart” of regular languages. To explore the relationship
of our P automaton based model and the ones based on more conventional type
of automata, we also define restricted variants of register machines which have
additional capabilities for dealing with countably infinite alphabets, but a very
restricted way of using the registers, the motivation of these restrictions being to
formalize the properties of the P automaton based model in a more conventional-
like automata theoretical framework.

We will show that the languages over finite alphabets contained by the lan-
guage class accepted by P finite automata are precisely the regular languages,
thus, since all infinite alphabet languages mentioned above are also contained in
this class, with P finite automata we can obtain a more adequate generalization
of finite automata, and of regular languages, to infinite alphabets, then with any
of the above mentioned approaches.

2 Preliminaries and Definitions

We first recall the notions and the notations we use. The reader is assumed to
be familiar with the basics of formal language theory, for details see [8]. Let Σ

be a not necessarily finite, but countable set of symbols called alphabet. Let Σ∗

be the set of all words over Σ, that is, the set of finite strings of symbols from Σ,
and let Σ+ = Σ∗ −{ε} where ε denotes the empty word. For any set A ⊆ Σ let
eraseA : Σ∗ → (Σ −A)∗ with eraseA(x) = x for x ∈ Σ −A, and eraseA(x) = ε

for x ∈ A.
Let V be a set of objects, and let N denote the set of nonnegative integers.

A multiset is a mapping M : V → N which assigns to each object a ∈ V its

326 J. Dassow and G. Vaszil

multiplicity M(a) in M . The support of M is the set supp(M) = {a | M(a) ≥ 1}.
If supp(M) is a finite set, then M is called a finite multiset. The set of all finite
multisets over the set V is denoted by V ◦.

We say that a ∈ M if M(a) ≥ 1. For M1, M2 : V → N, the containment
relation M1 ⊆ M2 holds if for all a ∈ V , M1(a) ≤ M2(a). The union of M1 and
M2 is defined as (M1 ∪ M2) : V → N with (M1 ∪ M2)(a) = M1(a) + M2(a)
for all a ∈ V , the difference is defined for M2 ⊆ M1 as (M1 − M2) : V → N

with (M1 − M2)(a) = M1(a) − M2(a) for all a ∈ V , and the intersection is
(M1 ∩ M2) : V → N with (M1 ∩ M2)(a) = min(M1(a), M2(a)) for a ∈ V , where
min(x, y) denotes the minimum of x, y ∈ N. We say that M is empty if its
support is empty, supp(M) = ∅.

A multiset M over the finite set of objects V can be represented as a string w

over the alphabet V with |w|a = M(a) where a ∈ V and |w|a denotes the number
of occurrences of the symbol a in the string w, and with ε representing the empty
multiset. In the following we sometimes identify the finite multiset of objects
M : V → N with the word w over V representing M , thus we write w ∈ V ◦,
or sometimes we enumerate the not necessarily distinct elements a1, . . . , an of a
multiset as M = {{a1, . . . , an}}, by using double brackets to distinguish from
the usual set notation.

A P system is a structure of hierarchically embedded membranes, each having
a label and enclosing a region containing a multiset of objects and possibly other
membranes. The out-most membrane which is unique and usually labeled with 1,
is called the skin membrane. The membrane structure is denoted by a sequence
of matching parentheses where the matching pairs have the same label as the
membranes they represent. If membrane i contains membrane j, and there is no
other membrane, k, such that k contains j and i contains k, then we say that
membrane i is the parent membrane of j, denoted as parent(j) = i.

The evolution of the contents of the regions of a P system is described by
rules associated to the regions. Applying the rules synchronously in each region,
the system performs a computation by passing from one configuration to another
one. Several variants of the basic notion have been introduced and studied prov-
ing the power of the framework, see the monograph [7] for a summary of notions
and results of the area. In the following we concentrate on communication rules
called symport or antiport rules.

A symport rule is of the form (x, in) or (x, out), x ∈ V ◦. If such a rule is
present in a region i, then the objects of the multiset x can enter from the parent
region or can leave to the parent region, respectively. An antiport rule is of the
form (x, in; y, out), x, y ∈ V ◦, in this case, objects of x enter from the parent
region and in the same step, objects of y leave to the parent region. All types
of these rules might be equipped with a promoter or inhibitor multiset, denoted
as (x, in)|Z , (x, out)|Z , or (x, in; y, out)|Z , with x, y ∈ V ◦, Z ∈ {z,¬z | z ∈ V ◦},
where if Z = z then the rules can only be applied if region i contains the objects
of multiset z, or if Z = ¬z, then region i must not contain any of the elements
of z. (For more on symport/antiport see [6], for the use of promoters see [4].)

P Finite Automata over Countably Infinite Alphabets 327

A P automaton is Γ = (V, µ, (w1, P1, F1), . . . , (wn, Pn, Fn)) where n ≥ 1 is the
number of membranes, V is a finite set of objects, µ is a membrane structure of n

membranes with membrane 1 being the skin membrane, and for all i, 1 ≤ i ≤ n,

– wi ∈ V ◦ is the initial contents (state) of region i, that is, it is the finite
multiset of all objects contained initially by region i,

– Pi is a finite set of communication rules associated to membrane i, they can
be symport rules or antiport rules, with or without promoters or inhibitors,
as above, and

– Fi ⊆ V ◦ is a finite set of finite multisets over V called the set of final states
of region i. If Fi = ∅, then all the states of membrane i are considered to be
final.

To simplify the notations we denote symport and antiport rules with or without
promoters/inhibitors as (x, in; y, out)|Z , x, y ∈ V ◦, Z ∈ {z,¬z | z ∈ V ◦}, thus we
also allow x, y, z to be the empty multiset/empty string. If y = ε or x = ε, then
the notation above denotes the symport rule (x, in)|Z or (y, out)|Z , respectively,
if z = ε, then the rules above are without promoters or inhibitors, they can also
be denoted as (x, in; y, out). We might also exchange the order of multisets to
be sent out and to be imported, that is, the rule (x, out; y, in)|Z is equivalent to
(y, in; x, out)|Z , with x, y, Z as above.

The n-tuple of finite multisets of objects present in the n regions of the
P automaton Γ describes a configuration of Γ , the n-tuple (w1, . . . , wn) ∈ (V ◦)n

is the initial configuration.
We say that a promoter or inhibitor Z of a rule (x, in; y, out)|Z ∈ Pi is

consistent with a configuration (w0, w1, . . . , wn), if it permits the application of
the rule, that is, either Z = z ∈ V ◦ and z ⊆ wi, or Z = ¬z, z ∈ V ◦ and
z ∩ wi = ε.

The application of the rules can take place in a sequential, or in a maximally
parallel manner. Here we only consider parallel rule application, but we keep the
subscript “par” in order to emphasize that maximal parallel application is just
one of the different possibilities.

The transition mapping of a P automaton is a partial mapping δpar : V ◦ ×
(V ◦)n → 2(V ◦)n

. These mappings are defined implicitly by the rules of the sets
Pi, 1 ≤ i ≤ n. For a configuration (u1, . . . , un),

(u′
1, . . . , u

′
n) ∈ δpar(u, (u1, . . . , un))

holds, that is, while reading the input u ∈ V ◦ the automaton may enter the new
configuration (u′

1, . . . , u
′
n) ∈ (V ◦)n, if there exist rules as follows.

– For all i, 1 ≤ i ≤ n, there is a multiset of rules Ri = {{ri,1, . . . , ri,mi
}},

where ri,j = (xi,j , in; yi,j , out)|Zi,j
∈ Pi and Zi,j , 1 ≤ j ≤ mi, is consistent

with ui, satisfying the conditions below, where xi, yi denote the multisets
⋃

1≤j≤mi
xi,j and

⋃

1≤j≤mi
yi,j , respectively. Furthermore, there is no rule

occurrence r ∈ Pj , being consistent with uj , 1 ≤ j ≤ n, with the additional
restriction that if r ∈ P1 then r 6= (x, in)|Z , such that the rule multisets R′

i

with R′
i = Ri for i 6= j and R′

j = {{r}} ∪ Rj , also satisfy the conditions.

328 J. Dassow and G. Vaszil

The conditions are given as

1. x1 = u, and
2. (

⋃

parent(j)=i xj) ∪ yi ⊆ ui, 1 ≤ i ≤ n,

and then the new configuration is obtained by

u′
i = ui ∪ xi − yi ∪

⋃

parent(j)=i

yj −
⋃

parent(j)=i

xj , 1 ≤ i ≤ n.

Note that we allow the use of rules of type (x, in)|Z in the skin membrane in such
a way that the application of any number of copies of these rules is considered
to be maximally parallel.

Let us extend δpar to δ̄par, a function mapping (V ◦)∗, the sequences of finite
multisets over V , and (V ◦)n, the configurations of Γ , to new configurations.

1. δ̄par(v, (u1, . . . , un)) = δpar(v, (u1, . . . , un)), v, ui ∈ V ◦, 1 ≤ i ≤ n, and
2. δ̄par((v1) . . . (vs+1), (u1, . . . , un)) =

⋃

δpar(vs+1, (u
′
1, . . . , u

′
n))

for all (u′
1, . . . , u

′
n) ∈ δ̄par((v1) . . . (vs), (u1, . . . , un)), vj , ui, u

′
i ∈ V ◦,

1 ≤ i ≤ n, 1 ≤ j ≤ s + 1.

Note that we use brackets in the multiset sequence (v1) . . . (vs+1) ∈ (V ◦)∗ in
order to distinguish it from the multiset v1 ∪ . . . ∪ vs+1 ∈ V ◦.

The sequence of multisets of objects accepted by the P automaton is the
sequence of input multisets consumed by the skin membrane during the sequence
of computational steps while the system reaches a final state, a configuration
where for all j with Fj 6= ∅, the contents uj ∈ V ◦ of membrane j is “final”, i.e.,
uj ∈ Fj .

Let Γ be a P automaton as above with initial configuration (w1, . . . , wn), let
Σ be an alphabet, and let f : V ◦ −→ Σ ∪ {ε} be a mapping with f(x) = ε if
and only if x = ε.

We obtain the words of the language accepted by Γ as the images of the
accepted multiset sequences, that is,

L(Γ, f) = {f(v1) . . . f(vs) ∈ Σ∗ | (u1, . . . , un) ∈ δ̄par((v1) . . . (vs), (w1, . . . , wn))

with uj ∈ Fj for all j with Fj 6= ∅, 1 ≤ j ≤ n, 1 ≤ s}.

Obviously, the choice of the mapping f is essential. It has to be “easily” com-
putable because the power of the P automaton should be provided by the under-
lying membrane system and not by f itself. The notion of “easiness”, however,
greatly depends on the context we are working in, so we do not give it a general
specification here.

3 P Finite Automata and Restricted Register Automata

Now we introduce a restricted variant of P automata which we call P finite
automata. The object alphabet of a P finite automaton contains a distinct el-
ement which is the only one that can appear in an arbitrary number of copies

P Finite Automata over Countably Infinite Alphabets 329

inside the membrane structure and can be present only in the skin membrane.
The other objects can move around through the regions, but they can only be
exported, thus, their number of occurrences cannot increase during any compu-
tation. These properties are ensured by the very special and very simple form of
rules which can be used by the system.

Definition 1 A P finite automaton (PFA in short) is a P automaton (V ∪
{a}, µ, (w1, P1, F1), . . . , (wn, Pn, Fn)) where V ∪ {a} is a finite alphabet with a
distinct element denoted by a, µ is a membrane structure of n membranes, and
for 1 ≤ i ≤ n, wi ∈ V ◦ is the initial multiset of region i, Fi is the set of final
states for region i, and Pi is a finite set of rules associated to region i where

– if i 6= 1, Pi contains rules of the form (x, in; y, out)|Z with Z ∈ {z,¬z},
x, y, z ∈ V ◦, and

– P1 contains rules of the form (x, in; y, out)|Z where x ∈ {a}◦, y ∈ (V ∪{a})◦,
Z ∈ {z,¬z}, z ∈ V ◦.

Thus, a PFA can only input multisets of the symbol a from the environment
and these symbols can only remain in the skin region or be sent back to the
environment, but they cannot enter regions i with i ≥ 2. The symbol a is the only
one which can appear in arbitrary many copies inside the system, the number
of the other letters is at most as many as in the initial configuration, it might
only decrease during the computation.

To obtain the accepted word we set up a correspondence between the set of
possible input multisets and the countably infinite alphabet Σ = {ai | i ≥ 1}
based on the number of a symbols in the input. If M ∈ {a}◦ is an input multiset
containing k copies of the symbol a, that is, M(a) = k, then M is mapped to
ak ∈ Σ. Thus, a sequence of input multisets corresponds to a sequence of letters
from Σ. This is formalized in the following definition.

Definition 2 Let Σ = {ai | i ≥ 1} be a countably infinite alphabet, and let Γ

be a PFA as above. The language over Σ accepted by Γ , denoted as L(Γ), is
defined as follows.

L(Γ) = {ai1ai2 . . . ais
∈ Σ∗ | (u1, . . . , un) ∈ δ̄par((v1) . . . (vs), (w1, . . . , wn))

with uj ∈ Fj for all j with Fj 6= ∅, 1 ≤ j ≤ n, and

f(vj) = aij
, 1 ≤ j ≤ s}

where f is defined as f : {a}◦ → Σ ∪ {ε}, with f(M) = ai where M(a) = i for
a multiset M(a) > 0, and f(M) = ε for M with M(a) = 0.

Let L(PFA) denote the class of languages accepted by P finite automata.
Now we define restricted two register automata, or RRA in short, an other

type of machine model to capture the capabilities of P finite automata. As we
will show, the two models are equivalent, that is, they characterize the same
class of infinite alphabet languages.

330 J. Dassow and G. Vaszil

An RRA has a finite control unit and two registers holding nonnegative
integer values. The machine is capable of subtracting certain values from the
first register and adding other values to the second one, based on rules specifying
an internal state and two integers, until no more modifications of this type are
possible. At this point, if the value of the second register is k, the machine reads
an input symbol ak from the countably infinite input alphabet while changing
its state, empties the second register, and adds its value to the contents of the
first register.

Definition 3 A restricted register finite automaton, or RRA in short, is a con-
struct M = (Σ, Q, P,≤, q0, r0, F) where Σ = {ai | i ≥ 1} is a countably infinite
alphabet, Q is a finite set of states, q0 ∈ Q is the initial state, r0 ∈ N is a
nonnegative integer, the initial contents of the first register, F ⊆ Q is the set of
final states, P is a finite set of instructions of the form (q; i1, i2), or (q, q′; i1, i2)
where q, q′ ∈ Q, i1, i2 ∈ N, and ≤ is a transitive relation defined on the rules of
the form (q, q′; i1, i2) ∈ P with the property that (q1, q2; i1, i2) ≤ (q′1, q

′
2; i

′
1, i

′
2)

implies q1 = q′1 and i1 ≤ i′1 (but not the other way around, i.e., rule pairs with
the above properties are not necessarily elements of the relation ≤). Further-
more, (∗) if (q, q′; i1, i2) ∈ P with i1 > 0 or i2 > 0, then the internal state q is
not reachable from q′, that is, q′ 6= q and there is no sequence of states

q′ = q1, q2, . . . , qt = q, qj ∈ Q, 1 ≤ j ≤ t,

for any t ≥ 2, such that (qj , qj+1; ij1 , ij2) ∈ P , ij1 , ij2 ∈ N, for all 1 ≤ j ≤ t − 1.

A configuration of M is a triple (q, r1, r2) with the current state q ∈ Q, and the
current register contents r1, r2 ∈ N. Given a configuration (q, r1, r2), the register
contents can be modified obtaining (q, r′1, r

′
2), denoted as

(q, r1, r2) ⇒ (q, r′1, r
′
2),

if there is an instruction (q; i1, i2) ∈ P with r1 − i1 ≥ 0, and r′1 = r1 − i1,
r′2 = r2 + i2, thus, the value of i1 is subtracted from the first register, and i2 is
added to the second register.

The internal state of the machine can be modified while reading the input
symbol aj , denoted as

(q, r1, r2) ⇒
aj (q′, r′1, 0),

provided, that there is an instruction (q, q′; i1, i2) ∈ P , where r1 − i1 ≥ 0. Then
j = r2 + i2 and r′1 = r1 − i1 + j. Thus, when an instruction of this type is used,
then after modifying the register contents using the values i1, i2, the resulting
contents of the second register, denoted above as j, is added to the value of the
first register, the symbol aj is read from the input, and the contents of the second
register is changed to 0. Note that if j = r2 + i2 = 0, then the automaton may
change its state without reading any input symbol, or in other words, a0 = ε.
Note also, that if any of i1 or i2 in an instruction (q, q′; i1, i2) ∈ P is not zero, then
the instruction can only be used once during any computation of the automaton

P Finite Automata over Countably Infinite Alphabets 331

since, due to the constraint marked with (∗) and described above, after being in
state q′, the internal control can never enter state q again.

Let us denote the reflexive and transitive closure of ⇒ by ⇒∗, and let a
transition of M be defined as

(q, r1, 0) `aj (q′, r′1, 0),

if (q, r1, 0) ⇒∗ (q, r′′1 , r′′2) ⇒aj (q′, r′1, 0), and the following properties hold: If
(q, q′; i1, i2) is the rule applied in (q, r′′1 , r′′2) ⇒aj (q′, r′1, 0) above, then there is
no rule (q; i′1, i

′
2) ∈ P with i1 + i′1 ≤ r′′1 , and there is no (q, q′′; i′′1 , i′′2) ∈ P such

that (q, q′; i1, i2) ≤ (q, q′′; i′′1 , i′′2) and i′′1 ≤ r′′1 .
Note, that if (q, r1, 0) `aj (q, r′1, 0) holds and there is a rule of the form

(q; 0, i2) ∈ P , then (q, r1, 0) `aj+k·i2 (q′, r′1 + k · i2, 0) also holds, for any k ∈ N.

Definition 4 Let M be a RRA as above. The language accepted by M is defined
as

L(M) = {w = x1 . . . xn ∈ Σ∗ | (q0, r0, 0) = C0 `x1 C1 `x2 · · · `xn−1

Cn−1 `xn Cn = (qf , r, 0) where qf ∈ F}.

Let the class of languages (over countably infinite alphabets) accepted by RRA
be denoted by L(RRA).

Now we show that P finite automata and restricted register automata are
equivalent, that is, they accept the same class of infinite alphabet languages.

Lemma 1 L(RRA) = L(PFA).

Proof. We first show that L(RRA) ⊆ L(PFA). Let Σ = {ai | i ≥ 1} be a
countably infinite alphabet, and let L ⊆ Σ∗ be a language accepted by the RRA
M = (Σ, Q, P,≤, q0, r0, F). We construct a P finite automaton Γ , such that
L(M) = L(Γ).

Let Γ = (V ∪ {a}, [[]2]1, (w1, P1, ∅), (w2, P2, F2)) where V = Q ∪ {A, B} ∪
{(q, q′; i1, i2) ∈ P} for the additional symbols A, B 6∈ Q, and

w1 = Aar0 ∪ {{q | q ∈ Q}},

P1 = {(ai1 , out; ai2 , in)|(q,q′;k,l)q | (q; i1, i2) ∈ P} ∪

{(qB, out)|(q,q′;k,l)q | (q, q′; k, l) ∈ P, k + l > 0}

{(ai1q, out; ai2 , in)|(q,q′;i1,i2)q | (q, q′; i1, i2) ∈ P, i1 + i2 > 0} ∪

{(ai′1−i1B, out)|(q,q′;i1,i2)q | (q, q′; i1, i2) ≤ (q, q′′; i′1, i
′
2) for some

(q, q′′; i′1, i
′
2) ∈ P},

w2 = {{(q, q′; i1, i2) ∈ P}} ∪ {{B}},

P2 = {((q0, q; i1, i2)B, out; A, in) | q ∈ Q, (q0, q; i1, i2) ∈ P} ∪

{((q′, q′′; i1, i2), out; (q, q′; i1, i2), in)} ∪

{((q, qf ; i1, i2)B, in) | qf ∈ F},

F2 = w2AB.

332 J. Dassow and G. Vaszil

We claim that M ′ accepts the same words as M . To see this, consider the
following. A configuration of Γ containing (q, q′; i1, i2), q, and ar1 in the first
region corresponds to a configuration (q, r1, 0) of M . Being in a configuration
(q, r1, 0), M can apply its rules (q; i1, i2), each of which has a corresponding
rule (ai1 , out; ai2 , in)|(q,q′;k,l)q in Γ , and then one rule (q, q′; i1, i2) which has
in Γ the counterpart (ai1q, out; ai2 , in)|(q,q′;i1,i2)q if i1 + i2 > 0. The repeated
application of the rules of M is simulated by the maximal parallel application
of the corresponding rules of Γ .

The second region of Γ is responsible for changing the rule symbols in the
first region, it is achieved with ((q′, q′′; i1, i2), out; (q, q′; i1, i2), in). The export
of the state symbols q to the environment makes sure that Γ cannot reach
a configuration corresponding to the state q of M after simulating a rule of
the form (q, q′; i1, i2) with i1 + i2 > 0. If such a rule should be simulated and
q is not sent out the environment with (ai1q, out; ai2 , in)|(q,q′;i1,i2)q , then the
rule (qB, out)|(q,q′ ;k,l)q must be used, which sends B out to the environment,
making it impossible for Γ to reach a final configuration. The symbol B is also
sent out, thus, a final configuration cannot be reached, in the case when the
simulated rule (q, q′; i1, i2) could not be applied in M because of the existence
of (q, q′; i1, i2) ≤ (q, q′′; i′1, i

′
2) where (q, q′′; i′1, i

′
2) could also be applicable.

Let us now show that L(PFA) ⊆ L(RRA). Let Σ = {ai | i ≥ 1} be a
countably infinite alphabet, and let L ⊆ Σ∗ be a language accepted by the P
finite automaton Γ = (V ∪{a}, µ, (w1, P1, ∅), . . . , (wn, Pn, Fn)). We construct an
RRA M , such that L(M) = L(Γ).

First, let for any V ′ ∈ V ◦ (finite) multiset of objects DIST (V ′) denote the
set of possible “distributions” of the elements of V ′ in the different membranes
of µ, that is, let DIST (V ′) = {(v1, . . . , vn) |

⋃n
i=1 vi = V ′}. Let also, for any d ∈

DIST (V ′), the set NEXT (d) ⊆ DIST (V ′) denote the set of those distributions
of the elements of V ′ which can be reached from d ∈ DIST (V ′) by the maximal
parallel application of rules of the form (x, out; y, in)|Z ∈ Pi, i ≥ 2, Z ∈ {z,¬z},
x, y, z ∈ V ◦, in the membranes i, i ≥ 2, of M . Note that, given V ′ and

⋃n

i=2 Pi,
DIST (V ′) and NEXT (d) for any d ∈ DIST (V ′) are easily constructible.

For any rule set Pi, 1 ≤ i ≤ n, and distribution d ∈ DIST (V ′), V ′ ∈ V ◦,
let Pi(d) denote the set of those rules (x, out; y, in)|Z ∈ Pi where Z is consistent
with d ∈ DIST (V ′).

Now we construct the simulating RRA. Let M = (Σ, Q, P,≤, q0, r0, F). The
states of the finite control correspond to the possible distributions of elements
from V in the different membranes of M , the contents of the first counter corre-
sponds to the number of a symbols in the skin membrane. M is constructed as
follows.

Let W = erase{a}(
⋃n

i=1 wi), thus W is the multiset of objects from V oc-
curring in the regions of the P finite automata Γ . Let Q =

⋃

W ′⊆W DIST (W ′),

q0 = (w′
1, w2, . . . , wn), and r0 = k, where w′

1 = erase{a}(w1) and w1 = akw′
1.

Let also

F = {(v1, . . . , vn) ∈ Q | vi ∈ Fi for all i with Fi 6= ∅, 1 ≤ i ≤ n},

P Finite Automata over Countably Infinite Alphabets 333

and let the set of instructions be the following.

P = {(q, i1, i2) | (ai1 , out; ai2 , in)|Z ∈ P1(q), q ∈ Q} ∪

{(q, q′, i1, i2) | there is a multiset of rules

(ai1,j xj , out; ai2,j , in)|Zj
∈ P1(q), xj ∈ (V)◦, xj 6= ε, 1 ≤ j ≤ t,

for q = (u1, . . . , un) and i1 = Σt
j=1ij,1, i2 = Σt

j=1ij,2, with

q′ = (v1, . . . , vn) ∈ NEXT (u1 − x, u2, . . . , un) where x =

t
⋃

j=1

xj}.

Furthermore, if for some state q = (u1, . . . , un), there are two multisets of rules

(ai1,j xj , out; ai2,j , in)|Zj
∈ P1(q), 1 ≤ j ≤ t, and

(ai′1,j x′
j , out; ai′2,j , in)|Z′

j
∈ P1(q), 1 ≤ j ≤ t′,

such that for x =
⋃t

j=1 xj , x′ =
⋃t′

j=1 x′
j , the property that x ∪ x′ ⊆ u1 holds,

and there exists a state q̄ = (v1, . . . , vn) such that for q1 = (u1 − x, u2, . . . , un)
and q2 = (u1 − x − x′, u2, . . . , un),

q̄ ∈ {(s1 − x′, s2, . . . , sn) | (s1, . . . , sn) ∈ NEXT (q1)} ∩ NEXT (q2),

then let

(q, (v1 + x′, . . . , vn); i1, i2) ≤ (q, (v1, . . . , vn); i1 + i′1, i2 + i′2)

for i1 = Σt
j=1ij,1, i2 = Σt

j=1ij,2, i
′
1 = Σt′

j=1i
′
j,1, i′2 = Σt′

j=1i
′
j,2.

To see how these rules simulate the P finite automaton Γ , consider the fol-
lowing. A configuration (ar1v1, . . . , vn), vi ∈ V ◦, 1 ≤ i ≤ n, of Γ corresponds to
the configuration (q, r1, 0) of M where q = (v1, . . . , vn).

Consider now a computational step of Γ , in which the maximal parallel ap-
plication of rules of the form (ai1 , out; ai2 , in)|Z occurs. This can be simulated by
the repeated applications of rules of the form (q; i1, i2) and then with (q, q′; 0, 0)
where q′ = (v′1, . . . , v

′
n) and the configuration (v′

1, . . . , v
′
n) is one of those which

can be obtained by applying the rest of the rules in the rest of the regions of Γ .
If not only rules of the form (ai1 , out; ai2 , in)|Z , but also rules of the form

(ai1u, out; ai2 , in)|Z with u ∈ V ◦, u 6= ε, are applied, then instead of (q, q′; 0, 0),
a rule of the form (q, q′; i1, i2), i1 + i2 > 0, corresponding to a subset of the
applicable rules of this form are used, q′ corresponding to a possible distribution
of the remaining elements of V which were not sent out to the environment by
the corresponding rule set of Γ .

The construction of the relation ≤ ensures that M uses only rules which
correspond to maximal subsets of the applicable rules of Γ . ut

4 L(PFA) as the Extension of the Regular Language
Class to Infinite Alphabets

First we show that all “conventional”, finite alphabet regular languages can be
accepted by P finite automata.

334 J. Dassow and G. Vaszil

Lemma 2 L(REG) ⊂ L(PFA).

Proof. Let M = (Σ1, Q, δ, q0, F) be a deterministic finite automaton over the
finite input alphabet Σ1 = {a1, . . . , ak}, with set of states Q, transition relation
δ : Q × Σ → Q, initial state q0 ∈ Q, and set of final states F ⊆ Q. Let the
regular language accepted by M be denoted by L(M). Let us also assume that
q0 6∈ F , and furthermore, there is no q ∈ Q, ai ∈ Σ1, such that δ(q, ai) = q0.

Let TRANS = {[q1, ai, q2] | δ(q1, ai) = q2} and let TRANS′ = {[q1, ai, q2]
′ |

δ(q1, ai) = q2}, a primed and a non-primed set of triples corresponding to the
transitions of M . Let us also denote for any t′ ∈ TRANS′, by next(t′) the
set of those non-primed transition symbols which correspond to transitions that
can follow the transition denoted by the primed symbol t′, that is, next(t′) =
{[q2, aj , q3] ∈ TRANS | t′ = [q1, ai, q2]

′}. For any non-primed t ∈ TRANS, we
always denote the corresponding primed symbol from TRANS ′ by t′.

Now we construct a P finite automaton Γ , such that L(Γ) = L(M). Let Γ =
(V ∪{a}, [[]2]1, (w1, P1, ∅), (w2, P2, F2)) where V = TRANS∪TRANS ′∪{#}
and

w1 = a#,

P1 = {(ai, in; a, out)|t, (a
i−1, out)|t′ | t = [qj , ai, qk], i > 1} ∪

{(a, in; a, out)|t | t = [qj , a1, qk]},

w2 = {{t, t′ | t ∈ TRANS}},

P2 = {(#, in; t0, out) | t0 = [q0, ai, q]} ∪

{(t, in; t′, out), (t′, in; s, out) | t ∈ TRANS, s ∈ next(t′)},

F2 = { {{t, t′ | t ∈ TRANS}}− {{s′}} | for

all s′ ∈ TRANS′ such that s′ = [q, ai, qf]′, qf ∈ F}.

It is not difficult to see how Γ simulates M . The rules of the second region
are responsible for sending symbols representing the transitions of M into the
first region in an order which is a legal transition sequence of M , and the rules
of the first region import from the environment the necessary number of as
corresponding to the input symbol belonging to the simulated transition. ut

Now we show that the class of finite alphabet languages accepted by P finite
automata is precisely the class of regular languages.

Lemma 3 If L is a language over a finite alphabet, such that L ∈ L(PFA),
then L ∈ L(REG).

Proof. Let M = (Σ, Q, P,≤, q0, r0, F) be a RRA and let L(M) ⊆ Σ∗
1 where Σ1 ⊆

Σ is a finite alphabet. Note that the existence of a rule of the form (q, 0, i2) ∈ P

would contradict the fact that L(M) is a language over a finite alphabet, thus,
we can assume that there are no rules of this form in the rule set P . Let us
also assume, without the loss of generality, that q0 6∈ F . In the following, we
construct a nondeterministic finite automaton M ′, such that L(M ′) = L(M).

P Finite Automata over Countably Infinite Alphabets 335

Let for all q ∈ Q, Pq be the set of those rules for state q which decrement the
first register, Pq = {(q; r1, r2), (q, q

′; r1, r2) ∈ P | r1 > 0}. Let ∞ be a symbol,
such that for all n ∈ N, n ≤ ∞, and let rest(q) ∈ N ∪ {∞} be

rest(q)

{

min({r1 | (q; r1, r2), (q, q
′; r1, r2) ∈ Pq}) − 1 if Pq 6= ∅,

∞ if Pq = ∅,

that is, rest(q) denotes the maximal value which can be stored in the first register
when M is in sate q, such that no rule which decrements the first register can
be applied because the contents of the first register is less then necessary. If for
a certain q ∈ Q, the set Pq is empty, then rest(q) = ∞.

Let M ′ = (Σ1, Q
′, δ, q′0, F

′) be a finite automaton with input alphabet Σ1,
state set Q′, transition relation δ : Q′ × Σ1 → 2Q′

, initial state q′0 ∈ Q′, and set
of final states F ′ ⊆ Q′.

The states of M ′ are essentially elements of Q × N,

Q′ = {(q, i) | q ∈ Q, 0 ≤ i ≤ max({rest(q) | q ∈ Q, rest(q) 6= ∞}) + |Σ1|+

r0 + Σ(q,q′;i1,i2)∈P i2}.

The initial state of M ′ is q′0 = (q0, r0). For the initial state, we define for all
j, 0 ≤ j ≤ |Σ1|, that is, since in our notation a0 = ε, for all symbols from
Σ1 ∪ {ε}

δ((q0, r0), aj) = {(q, i) | (q0, r0, 0) `aj (q, i, 0)}.

Let Q′
0 = {(q0, r0)}, and let Q1 = Q′

0 ∪ δ((q0, r0), aj). Now, for all states in
(q, i) ∈ Q′

1,
δ((q, i), aj) = {(q′, i′) | (q, i, 0) `aj (q′, i′, 0)},

and Q′
2 =

⋃

(q,i)∈Q′

1
δ((q, i), aj).

We continue this way the definition of δ and Q′
i, i ≥ 0. That is, if we already

have Q′
n, then Q′

n+1 =
⋃

(q,k)∈Q′

n
δ((q, k), aj), where

δ((q, k), aj) = {(q′, k′) | (q, k, 0) `aj (q′, k′, 0)}.

We claim that
⋃

i≥0 Q′
i is a finite set, namely that

⋃

i≥0 Q′
i ⊆ Q′, that is, that

M ′ is really a finite automaton.
To see this, consider a derivation

(q0, r0, 0) `x1 . . . (qi, ri, 0) `xi+1 (qi+1, ri+1, 0) . . . `xn (qn, rn, 0) = (qf , rn, 0).

Let (qi, ri, 0) `xi+1 (qi+1, ri+1, 0) be a transition with

(qi, ri, 0) ⇒∗ (qi, r
′
i, j1) ⇒

xi+1 (qi+1, ri+1, 0)

where xi+1 = aj , j = j1 + i2 and ri+1 = r′i + j if (qi, qi+1; i1, i2) is the rule
applied in the last step.

If rest(qi) < ri, then r′i < ri, thus, ri+1 = r′i + j ≤ rest(qi) + |Σ1| which
means that (qi+1, ri+1) ∈ Q′.

336 J. Dassow and G. Vaszil

If rest(qi) > ri then r′i = ri, j1 = i1 = 0, and ri+1 = ri + i2. Thus, during
this transition, the value of the first register can increase with the value i2 where
(qi, qi+1; i1, i2) with i2 > 0 is the rule applied in the last step. Since these types
of rules satisfy the constraint that qi is not reachable from qi+1, they can be
applied only once in any transition sequence. Thus, if we start the derivation in
the state (q0, r0) then the total increase of the first counter cannot be more then
Σ(q,q′;i1,i2)∈P i2, thus ri+1 ≤ r0 + Σ(q,q′;i1,i2)∈P i2, that is, (qi+1, ri+1) ∈ Q′.

If we now take F ′ = {(q, i) | (q, i) ∈ Q′, q ∈ F}, then it is clear that the
finite automaton M ′ simulates the RRA M , since all states of F ′ correspond to
accepting configurations of M , thus our statement is proved. ut

5 Conclusion

We have presented two equivalent computing models which are able to charac-
terize languages over infinite alphabets, we called them P finite automata and
restricted register finite automata. We have shown that the languages over finite
alphabets contained in the language class that these models characterize are
precisely the regular languages, thus it can be seen as the extension of the class
of regular languages to infinite alphabets. Without going into the details, we
would like to add that the languages mentioned in the introduction as regular
in the sense of [3] but not regular in the sense of [5], and vice versa, can all be
accepted by our model, thus, it seems that our approach is able to eliminate at
least some of the shortcomings of previous attempts to define the class of regular
languages over infinite alphabets in a reasonable way. A more detailed analysis
of L(PFA) (or equivalently L(RRA)) remains a topic of further study.

References

1. Cheng, E. H. Y., Kaminski, M.: Context-free Languages over Infinite Alphabets.
Acta Informatica 35 (1998) 245-267

2. Csuhaj-Varjú, E., Vaszil, Gy.: P Automata. In: Păun, Gh., Zandron, C. (eds.): Pre-
Proceedings of the Workshop on Membrane Computing WMC-CdeA 2002, Curtea
de Argeş, Romania, August 19-23, 2002. Pub. No. 1 of MolCoNet-IST-2001-32008
(2002) 177-192, and also in
Păun, Gh., Rozenberg, G., Salomaa, A., Zandron, C. (eds.): Membrane Computing.
Lecture Notes in Computer Science, Vol. 2597. Springer, Berlin (2003) 219-233

3. Kaminski, M., Francez, N.: Finite-memory Automata. Theoretical Computer Sci-
ence 134 (1994) 329-363

4. Mart́ın-Vide, C., Păun, A., Păun, Gh.: On the Power of P Systems with Symport
Rules. Journal of Universal Computer Science 8(2) (2002) 317-331

5. Otto, F.: Classes of Regular and Context-free Languages over Countably Infinite
Alphabets. Discrete Applied Mathematics 12 (1985) 41-56

6. Păun, A., Păun, Gh.: The Power of Communication: P Systems with Sym-
port/Antiport. New Generation Computing 20(3) (2002) 295-306

7. Păun, Gh.: Membrane Computing: An Introduction. Springer, Berlin, (2002)
8. Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages. Springer-

Verlag, Berlin, vol. 1-3, (1997)

