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Abstract. Stochastic simulations based on the tau leaping method are
applicable to well stirred chemical reaction systems occurring inside a
single fixed volume. In this paper we propose a novel method, based on
the tau leaping procedure, for the simulation of complex systems com-
posed by several communicating regions. The new method is here applied
to dynamical probabilistic P systems, which are characterized by several
features suitable to the purpose of performing stochastic simulations dis-
tributed in many membranes. Conclusive remarks and ideas for future
research are finally presented.

1 Introduction

Stochastic modelling of biological systems is a topic of interest, since stochas-
ticity and discreteness play an important role in cellular processes involving few
molecules such as, e.g., signal transduction pathways, and the working of tran-
scription or translation machinery ([11, 20] and references therein). Here we want
to introduce a new stochastic approach in the framework of P systems [14], as
a novel tool for the modelling of biological systems. In the following we will
assume that the reader is familiar with basic notions on P systems; for further
information we refer to the P systems Web Page:
http://psystems.disco.unimib.it.

The stochastic simulation algorithm (SSA, in short), introduced by Gillespie
in [8], is currently used as the reference procedure for performing stochastic
and discrete simulations of various biological systems (see, e.g., [1, 7, 12]). It
is essentially an exact numerical simulation method that keeps track of every
reaction event occurring in the modelled system, but has as a counterpart the
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fact that the load of computer work is sometimes too high, and thus many
realistic problems cannot be efficiently solved by using it.

To speed up the discrete stochastic simulation, Gillespie introduced in [9]
the tau leaping method as an approximate simulation strategy. Using Poisson
random numbers, it is possible to leap over many reaction events in a way that
well approximates the exact stochastic simulation.

The SSA, as well as the tau leaping method, are applicable to well stirred
chemical reaction systems contained inside a single fixed volume, at constant
temperature.

In this paper, we introduce a new method in order to overcome this limit and
to exploit the structure (formed by several volumes) and the communication of
P systems, simulating both the behaviour of every volume (or membrane) and
the behaviour of the whole system, using a modified tau leaping procedure.

We will refer to the dynamical probabilistic P systems (DPPs, in short) intro-
duced in [17, 18]: they are membrane systems where probabilities are associated
with the rules, and such values vary during the evolution of the system accord-
ing to a prescribed strategy. The evolution of the system is achieved using a
strategy similar to the SSA algorithm. More details about DPPs and examples
of simulated systems can be found in [16–18].

The paper is structured as follows. In Section 2 we recall the state of the
art of the stochastic simulations, the tau leaping procedure and we show some
results in order to test the accuracy and efficiency of the tau leaping method.
In Section 3 we introduce the new tau leaping procedure in the framework of
DPPs and we present some results obtained by the simulations. We conclude
with some remarks on future extensions of our work.

2 Gillespie’s stochastic simulation methods

In this section we explain how the tau leaping selection procedure works, we
present the pseudo-code of a possible implementation of the algorithm and we
show some results in order to prove the accuracy and the efficiency of this
method.

2.1 Tau leaping

The tau leaping method, first introduced by Gillespie in [9], is used to speed up
stochastic simulations where one keeps track of every reaction event (as in SSA
[8]), selecting a leap interval where more than one reaction can be fired.

Several improvements of the tau leaping have been proposed by Gillespie
and Petzold [10] in order to improve the strategy of selecting the size of the tau
leap. Tian and Burrage [19] and Chatterjee et al. [5] introduced a binomial tau
leaping to avoid the possibility of producing negative populations. Also Cao et

al. [2] modified the original tau leaping procedure to work out the negativity
problem.
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All these forms of tau leaping are lacking in two parts: first, they seem to
violate the leap condition [9] since, during the leap, the estimated change of
the propensity function is bound by a fraction ε (that is, a pre-specified error
control parameter 0 < ε ≤ 1) over the sum of all propensity functions. In this
way, any propensity function that has a relatively small value will be allowed to
change by a relatively large amount (the definitions of propensity function and
leap condition will be given in the following). Second, the tau leaping selection
requires the evaluation of M 2 quantities at each step, where M is the number
of reactions in the systems.

To avoid these problems, Gillespie et al. [3] introduced a new tau selection
procedure. This procedure (to which we will refer in this paper) is more accurate
than the previous ones since it satisfies more closely the leap condition, bounding
in a uniform manner the relative changes in the propensity functions. Moreover,
it is faster because the number of auxiliary quantities to compute increases
linearly with the number of reactant species.

We consider a well stirred system in thermal equilibrium consisting of N
molecular species {S1, . . . , SN}, which can interact through M chemical reaction
channels {R1, . . . , RM}. The vector X(t) ≡ (X1(t), . . . , XN(t)), where Xi(t) is
the number of molecules of the species Si at time t, describes the state of the
system at time t.

The probability that a reaction will occur in the next infinitesimal time in-
terval [t, t + dt) is given by aj(x)dt, where aj is called the propensity function of
the reaction Rj in the state X(t) = x and is defined as aj = hjcj , where hj is the
number of distinct reactant molecules combinations and cj is the stochastic rate
constant associated to the reaction Rj . The changes of the populations of the
species are ruled by the state change vector vj ≡ (v1j , . . . , vNj), for j = 1, . . . , M .
The element vij of vj represents the change in the number of species Si due to
reaction Rj .

The tau leaping procedure [3] tries to speed up the computation executing
several reactions at each step of length τ .

Given the state X(t) = x of the system, let Kj(τ, x, t) be the number of times
that a reaction Rj will fire in the time interval [t, t + τ) (where j runs over all
reaction channels).

For arbitrary values of τ , it is difficult to compute the values of Kj(τ, x, t).
On the contrary, if τ is small enough that the change in the state during [t, t+τ)
will be so slight that no propensity function will suffer an appreciable change
in its value (this is called leap condition), we obtain a good approximation to
Kj(τ, x, t) using P (a, τ), which is the Poisson random variable with mean and
variance aτ .

So, starting from the state X(t) = x and choosing a value τ that satisfies the
leap condition, we can update the state of the system at time t+ τ according to:

X(t + τ) = x +
M
∑

j=1

vjPj(aj(x), τ) (1)
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where Pj(aj(x), τ), for each j = 1, . . . , M , denotes an independent sample of the
Poisson random variable with mean aj(x)τ .

The procedure for the selection of tau is accomplished in order to bound the
relative changes in the molecular populations, in such a way that the relative
changes in the propensity functions will be all bounded, during the τ interval,
by a small value ε (0 ≤ ε ≤ 1).

Let ∆τXi be the change in the population Xi in the time interval from t to
t + τ , given the state X(t) = x, the above requirement can be written as:

|∆τXi| ≤ max{εixi, 1} ∀ i ∈ Irs, (2)

where Irs denotes the set of indices of all reactant species.
The values εi = εi(ε, xi) are chosen so that the relative changes in the propen-

sity functions will be all bounded, at least approximately, by ε. To do that, first
determine for each i ∈ Irs, the value of the higher order of reaction in which
species Si appears as a reactant (denoted by HOR(i)). Then take

εi =
ε

gi

(3)

where gi = gi(xi) is defined as follows:

(i) if HOR(i) = 1 then gi = 1;
(ii) if HOR(i) = 2 then gi = 2

– if any second-order reaction requires two Si molecules, then

gi =

(

2 +
1

xi − 1

)

(iii) if HOR(i) = 3 then gi = 3

– if some third-order reaction requires two Si molecules, then

gi =
3

2

(

2 +
1

xi − 1

)

– if some third-order reaction requires three Si molecules, then

gi =

(

3 +
1

xi − 1

2

xi − 2

)

The procedure for computing the largest value of τ that satisfies condition
(2) is the following.

Referring to the basic tau-leaping formula (1), it is possible to consider the
quantity defined in (2) to be:

∆τXi =
∑

j∈Jncr

vijPj(aj(x), τ) ∀ i ∈ Irs, (4)

where Jncr denotes the set of noncritical reactions. That is, a reaction chan-
nel with a positive propensity function that is currently within a small number
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of firings of exhausting one of its reactants is called critical reaction, the oth-
ers reactions are named, instead, noncritical reactions. The motivations of this
restriction can be found in [3].

As previously said, the Poisson random variables Pj(aj(x), τ) on the right-
hand side of the equation (4) are statistically independent and have means and
variances ajτ , so the mean and variance of the linear combination can be com-
puted as follows:

〈∆τXi〉 =
∑

j∈Jncr

vij [aj(x)τ ], var{∆τXi} =
∑

j∈Jncr

v2

ij [aj(x)τ ] (5)

for all i ∈ Irs. So, following the same reasoning that it was used in the tau
selection introduced in [10], it is possible to consider the bound (1) substantially
satisfied if it is simultaneously satisfied by the absolute mean and the standard
deviation of ∆τXi:

|∆τXi| ≤ max{εixi, 1},
√

var{∆τXi} ≤ max{εixi, 1}, (6)

for all i ∈ Irs.
Now, substituting formulas (5) into conditions (6) we obtain the following bounds
on τ :

τ ≤
max{εixi, 1}

|
∑

j∈Jncr

vijaj(x)|
, τ ≤

max{εixi, 1}
2

∑

j∈Jncr

v2

ijaj(x)
(7)

for all i ∈ Irs.
Finally, the procedure to obtain τ is done by first computing the quantities:

µi(x) =
∑

j∈Jncr

vijaj(x), ∀i ∈ Irs (8)

σ2

i (x) =
∑

j∈Jncr

v2

ijaj(x), ∀i ∈ Irs, (9)

where we still have the restriction on the noncritical reactions Jncr, due to the
conditions of the modified non-negative Poisson tau-leaping [3], and then taking:

τ = min
i∈Irs

{

max{εxi/gi, 1}

|µi(x)|
,
max{εxi/gi, 1}

2

σ2

i (x)

}

, (10)

where gi is obtained by the equation (3).

The formulas (8) and (9) are computed following the reasoning of [10], which

shows that µj(x)τ and
√

σ2

j (x)τ respectively estimate the mean and the standard

deviation of the expected change in aj(x) during τ , and formula (10) requires
that both of those quantities would be bounded to εa0(x) for j = 1, . . . , M
satisfying the leap condition.
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2.2 The algorithm

In this section, we introduce the algorithm used to compute the value of τ as
described in [3].

Recalling here that we consider a systems with N molecular species inter-
acting through M chemical reaction channels, the vector X(t) = x describes the
state of the system and the dynamic is ruled by the state change vectors vj

(where j runs over all reaction channels).

The algorithm works as follows:

1. Locate the set of all critical reactions;

2. Compute the quantities µ and σ2;

3. Select the value of τ ′ as indicated in equation (10);

4. If τ ′ < n · 1/a0 (where n is usually set to 10), execute an SSA step as
described in [8] and go to step 1, otherwise go to the next step;

5. Compute the sum of the propensity functions of all critical reactions ac
0
(x);

6. Generate τ ′′ = 1/ac
0
(x)·1/rnd, where rnd is a random value from the uniform

unit interval (0, 1);

7. If τ ′ < τ ′′ then τ = τ ′

- For all critical reactions Rj set the number of firings kj = 0.

- For all noncritical reactions Rj generate kj as a sample of the Poisson
random variable P (aj , τ) with mean ajτ .

8. Else if τ ′′ < τ ′ then τ = τ ′′

- Select one critical reaction Rj to be fired during this step and set kj = 1,
for all other critical reactions Rj set kj = 0.

- For all noncritical reactions Rj generate kj as a sample of the Poisson
random variable P (aj , τ) with mean ajτ .

9. Update the state of the system: x(t + τ) = x(t) +
∑

j kjvj .

During step 1, the procedure identifies the set of critical reactions, which
will be used in steps 5 and 6 to satisfy the requirements needed to avoid the
negativity. In step 2 the quantities needed to obtain the largest value of τ ′ (step
3) that satisfies the leap condition are computed. If this value (step 4) is less
than a multiple of 1/a0, then an SSA step is executed because, given the actual
state of the system, it is more accurate than a tau-leap step.

Steps 5 and 6 generate a second candidate leap τ ′′ that estimates the time
of the next critical reaction.

If τ ′ is smaller than τ ′′, than some noncritical reactions and no critical reac-
tions will be executed during the leap. Otherwise, several noncritical reactions
plus one critical reaction will be executed.

Step 9 updates the state of the system.
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2.3 Results

In this section we present some results in order to show the accuracy and effi-
ciency of the τ leaping procedure presented above. We have simulated a simple
system of consecutive reactions:

A
k1→ B

k2→ C (11)

using the τ leaping method and the SSA algorithm. Figure 1 shows the behaviour
of the system (11) simulated starting from a population of 1000 individuals of
species A; the stochastic constants used for the simulation are k1 = 0.1 and
k2 = 0.025. For the simulation with tau-leaping method, ε = 0.03 was used.

Figure 2 shows the histogram plots of the distribution of X1(0.1), that is
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Fig. 1. Consecutive reactions system

the number of individuals of species A at time 0.1 s, obtained from 106 runs of
the SSA and 106 runs of the tau leaping method with ε = 0.03, simulating the
system (11).

The similar behaviour shown in Figure 1 and the distances between the
SSA and the tau leap histograms of Figure 2 prove the accuracy of the tau
leaping procedure. The efficiency is proved by the average number of steps of
the simulations done, that is 102 using SSA and 79 with the tau leaping method.

3 τ -DPPs

In this section we present a new tau leaping selection method in the framework
of DPPs, the pseudo-code for the implementation of the procedure and we show
some result to test the exactness of the procedure and of the communication
between membranes.
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Fig. 2. Histogram plot of the distributions of species A

3.1 Tau leaping procedure in DPPs

The basic assumption of the tau leaping method introduced by Gillespie in [9],
is that the analysed system is contained inside a single fixed volume. The aim
of this work is to extend the tau leaping method to systems structured with
different volumes. In the following we will refer without distinction to volumes
or membranes.

P systems, first introduced by Paun in [14], have a membrane structure suit-
able to represent that kind of systems. Moreover, P systems manage the com-
munication between membranes like biological systems and also this feature is
suitable to our needs.

There are many classes of P systems [15], here we will refer to dynamical

probabilistic P systems (DPP, in short) introduced by Pescini et al. in [18].

The major advantages of DPPs are the stochastic modelling feature and the
possibility to probe different kind of parallelism; for instance, by introducing
a bounded parallelism it is possible to execute some rules at each step, inside
all membranes. This is exactly what happens executing the tau-leaping method
for simulating biological systems. The main difference, as previously said, is
that tau-leap algorithm works on a single volume whereas DPPs may simulate
complex structured systems, where every membrane can have a different set of
reaction channels.

Cazzaniga et al. introduced in [4] different stochastic approaches, using Gille-
spie SSA algorithm inside DPPs. The main problem arisen from that study is
connected to the communication rules, because synchronization of all evolutive
processes, in order to communicate objects between membranes, is forced.

Moreover, DPPs exploiting SSA select one rule in each membrane of the
system and compute the time needed to execute it, considering only the internal
state of the membrane where the rule will be executed. Therefore, different τ
inside different membranes are obtained. For this reason, different time lines
are simulated although one rule per step (in every membrane where there is
something to evolve) is executed.
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Introducing tau leaping method inside DPPs, we can work out these problems
in three ways, because (1) we can choose the same leap of length τ for all the
volumes, naturally synchronizing the membranes. Like DPPs evolving according
to SSA algorithm, here we need to synchronize the processes running inside
every membrane, because all of these have to evolve executing the same number
of steps. The difference is that, when using SSA inside DPPs, the synchronization
is forced at the end of each step, because all volumes generate different values
of τ , that is, after the same number of steps the time simulated within the
membranes is different. On the contrary, with tau leaping method we execute
the same number of iterations, synchronizing the processes at the end of each
step, but the synchronization here is implicit, because at each iteration the same
value of τ for all membranes is used.

Moreover, (2) we can communicate objects in the right way assuming that
these are sent to the other volumes just at the end of each step, obtaining a
good approximation of the real behaviour, because inside τ leap step the order
of execution is not important.

Finally, (3) we can manage to keep track of the simulated time of the whole
system because, as previously said, every membrane of the system evolves ac-
cording to a common τ value, at each step.

The introduction of tau leaping method inside DPPs, requires a new proce-
dure to select the value of τ inside all membranes of the system.

We recall here that the original tau leaping procedure can evolve, during each
step, in three different manner: (i) like the SSA algorithm, executing one reac-
tion during the leap, (ii) executing only noncritical reactions, or (iii) executing
noncritical reactions and one critical reaction.

The τ -DPP selection procedure has to consider how every membrane is evolv-
ing during the actual step, and then the smallest τ generated within the mem-
branes is used to update the system.

For instance, if a membrane is in the condition of evolving by executing only
non critical reactions, but the τ chosen inside that membrane is not the smallest
one of the system, then, after receiving the minimal τ , that membrane has to
continue by sampling the rules to execute from the set of non critical reactions.

Finally, the procedure generates a local τ and then, if no membranes are
evolving like SSA algorithm, the smallest tau (τmin) generated inside the volumes
during the current step is chosen. Then the number of firings of the rules is
sample as the Poisson random variable P (aj , τmin) (where j runs over all reaction
channels).

If there is at least one membrane evolving in the SSA manner, which generates
a value τSSA, the procedure has to check if τmin = τSSA.

This requirement is needed because if τSSA is greater than τmin, it is not
possible to apply the rule selected inside that membrane, because the execution
would be longer than the leap.

Otherwise, τmin = τSSA means that τmin was generated by the membrane
evolving according to the SSA algorithm and the execution of the selected rule
is allowed.
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3.2 The new algorithm

In this section we introduce the procedure to select the τ leap value between
different membranes and how to execute local and communication rules.

The selection of local τ inside the membranes is done following the procedure
presented in Section 2.2, the smallest τ of the system is then used to select the
number of firings of the rules.

The new version of the algorithm, inside every volume, works as follows:

1. Locate the set of all critical reactions;
2. Compute the quantities µ and σ2;
3. Select the value of τ ′ as indicated in equation (10);
4. If τ ′ < n · 1/a0 (where n is usually set to 10) then extract an SSA τ as

described in [8], set flag = 1 and go to step 8, otherwise go to the next step;
5. Compute the sum of the propensity functions of all critical reactions ac

0
(x);

6. Generate τ ′′ = 1/ac
0
(x)·1/rnd, where rnd is a random value from the uniform

unit interval [0, 1];
7. If τ ′ < τ ′′, then set τ = τ ′ and flag = 2, else set τ = τ ′′ and flag = 3;
8. Receive the smallest tau of the system: τmin;
9. If flag == 1 and τ == τmin, extract one rule to execute;

10. If flag == 1 and τ > τmin, set τ = τ − τmin;
11. If flag == 2:

- For all critical reactions Rj , set the number of firings kj = 0.
- For all noncritical reactions Rj , generate kj as a sample of the Poisson

random variable P (aj , τmin) with mean ajτmin.

12. If flag == 3:

- Select one critical reaction Rj to be fired during this step and set kj = 1,
for all other critical reactions Rj set kj = 0.

- For all noncritical reactions Rj , generate kj as a sample of the Poisson
random variable P (aj , τmin) with mean ajτmin.

13. Send and Receive objects to and from other membranes (if communication
rules were selected);

14. If flag == 1, τ > τmin and objects are received, go to the next step,
otherwise go to step 8;

15. Update the state of the system: x(t + τmin) = x(t) +
∑

j kjvj .

The procedure begins like the pure tau leaping method, that is, the same τ
selection is executed.

In this new version of the algorithm, a flag is used during the iterations
to remember how the rule selection has to proceed: flag = 1 means that the
membrane is evolving according to the SSA algorithm, flag = 2 means that the
membrane has to execute only non critical reactions, and flag = 3 means that,
during the current step, the membrane will execute non critical reactions and
one critical reaction.

After receiving the smallest τ , during step 8, the procedure has to check how
the membrane will evolve.
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So, during the step 9 (the SSA-like evolution), if flag = 1 and the internal
τ is the smallest of the system, a single rule is applied during the actual step.
On the other hand (step 10), the value of the local τ is decreased by τmin and
no rule are executed, because during τmin is not possible to completely execute
the rule selected with the SSA algorithm that would spend τ to be executed.

If flag = 2 or flag = 3, the algorithm selects the rules to fire as a sample of
the Poisson random variable P (aj , τmin) with mean ajτmin.

All the communication rules are applied during step 13, sending and receiving
objects to and from other membranes.

Step 14 checks for eventually received object if the membrane is evolving in
SSA manner but without executing any rule: if something is received from the
outside, a new value of τ will be computed during the next iteration because,
although no reactions will be executed, the state of the membrane changes due
to the received objects. Otherwise the algorithm skips to step 8.

3.3 Results

To test the new algorithm presented in the previous section, we have imple-
mented the consecutive reactions systems, shown in subsection 2.3, in the frame-
work of DPPs. Here we want to model a system formed by two volumes, putting
one rule in each volume. Labelling the membranes with 1 and 2, we put the rule
A → (B, in2) inside volume 1 and B → (C, in1) inside volume 2. So, we can
test the communication between membranes and check the new tau selection
procedure.

Figure 3 shows the results of the tau leaping and the τ -DPPs simulations
that have similar behaviour.
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This benchmark shows that our algorithm is correct and reliable. We are
now working on more complex models such as the Ras/cAMP/PKA signaling
pathway in response to glucose addition and intracellular acidification in Sac-

charomyces cerevisiae [13], and to the Repressilator system [6].
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4 Conclusions

In this work we have presented the stochastic method based on the tau-leaping
procedure for simulating biological systems, implemented within the framework
of P systems. In particular, the class of dynamical probabilistic P systems have
been considered, to exploit the possibilities of modelling systems with a complex
structure (that is, composed by several volumes) and of probing different levels
of parallel rule application.

The new τ selection procedure here introduced works by selecting the smallest
τ taken from the set of τ -s generated by the membranes of the system during the
current iteration; then, the evolution step is performed executing several rules
that are selected following the procedure presented in Section 3.

The advantage of introducing tau leaping method inside DPPs is that we
can choose the same leap of length τ for all the volumes, we can communicate
objects in the right way (assuming that they are sent to the other volumes
just at the end of each step, because the execution order does not matter),
thus obtaining a good approximation of the system’s behaviour. Finally, we can
trace the simulated time of the whole system because every membrane evolves
according to a common τ value. Moreover, the time needed to simulate biological
systems using this new procedure is shorter than the time needed by the SSA.
In Section 3.3 the communication and the new tau leap procedures are tested,
comparing the behaviour of a simple system implemented both with the single
volume model and with the multi-volume model.

The approach proposed in this paper opens several interesting research lines,
directed to the modelling of real cellular processes or biological systems in gen-
eral, as well as to the algorithmic improvements of the procedure, and the devel-
opment of relevant (modelling and simulating) features in the area of Membrane
Computing.

References

1. A. Arkin, J. Ross, and H.H. McAdams. Stochastic kinetic analysis of developmental
pathway bifurcation in phage lambda-infected Escherichia coli cells. Genetics,
149:1633–1648, 1998.

2. Y. Cao, D. T. Gillespie, and L.R. Petzold. Avoiding negative populations in explicit
Poisson tau-leaping. Journ. Chem. Phys., 123:054104, 2005.

3. Y. Cao, D. T. Gillespie, and L.R. Petzold. Efficient step size selection for the
tau-leaping simulation method. Journ. Chem. Phys., 124:044109, 2006.

4. P. Cazzaniga, D. Pescini, F.J. Romero-Campero, D. Besozzi, and G. Mauri.
Stochastic approaches in P systems for simulating biological systems. In M.A.
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