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Abstract. In this paper we present a method to classify the states of a
finite Markov chain through membrane computing. A specific P system
with external output is designed for each boolean matrix associated with
a finite Markov chain. The computation of the system allows us to decide
the convergence of the process because it determines in the environment
the classification of the states (recurrent, absorbent, and transient) as
well as the periods of states. The amount of resources required in the
construction is polynomial in the number of states of the Markov chain.

1 Introduction

Markov chains constitute an important type of stochastic processes characterized
by their evolution along determinate values (called states of the process) over
time. These chains represent observations of physic systems whose evolution at a
future time, conditioned on their present and past values, depends only on their
present value. Thus, the Markov chain loses the memory of its starting state.

In order to study the evolution in time of a Markov chain as well as the
existence of the stationary distribution it is necessary to classify its states. This
classification depends on the path structure of the chain.

In this work this problem is approached within the framework of the cellular
computing with membranes. The amount of resources that we use is polynomial
in the number of states. This subject has been also treated in terms of DNA
computing ([1]), based on a mathematical proposition of existence rather than
on the classical definition of the period of a state. This is due to the fact that
DNA computing is good in detecting the existence, but it has difficulties in
obtaining numerical quantifications.

The paper is structured as follows. In the next section, basic concepts con-
cerning Markov chains and P systems are introduced. In Section 3 a semi–
uniform solution to the problem of classifying the states of a Markov chain
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in the framework of membrane computing is presented. Moreover, a formal ver-
ification of the system is given, and the run time and the resources required in
the description of the system are analyzed.

2 Preliminaries

2.1 Markov Chains

Markov chains are a class of random processes exhibiting a certain memoryless
property and providing a fundamental ingredient in the study of randomized
algorithms. Their study is one of the main areas in modern probability theory.

A Markov process is a stochastic process that has a limited form of historical
dependency. Let {X(t) : t ∈ τ} be a stochastic process defined on the parameter
τ . We will think of τ in terms of time and the values that X(t) can assume are
called states which are elements of a state space S. In the case when the set τ
is discrete and the set S is finite, the Markov process is called a discrete–time
finite Markov chain. We consider this kind of Markov chains because computer
programs work in discrete steps and computers work with a finite amount of
resources and have a finite number of states.

More formally, a finite Markov chain is a sequence {Xt : t ∈ N} of random
variables verifying the following (Markov) property:

P (Xt+1 = j/X0 = i0, X1 = i1, . . . , Xt = it) = P (Xt+1 = j/Xt = it).

That is, the value of Xt+1 conditioned on the value of Xt, is independent of
the values of random variables Xm for m < t.

We suppose that the state space of the chain, S, is the (finite) set of nonneg-
ative integers {e1, . . . , ek} (whose elements are called states or results), and the
chain is characterized by its evolution among these states over time.

Hence, a finite Markov chain {Xt : t ∈ N} provides a random process by a
change of states or results e1, . . . , ek in certain instants of discrete times t ∈ N,
and where the result of each event only depends on the result of the previous
event. So, such a Markov chain is characterized by the conditional distribution

pij(t) = P (Xt = ej/Xt−1 = ei), for all t ≥ 1,

which is called the transition probability of the process, providing one–step tran-
sition probability.

We say that a finite Markov chain is time homogeneous or it has station-
ary transition probabilities if the dependence between consecutive states does
not change, that is, P (Xn = ej/Xn−1 = ei) = P (Xn+m = ej/Xn+m−1 = ei),
for all n, m ∈ N, ei, ej ∈ S. In this case, we write the transition probability
as pij = P (Xn = ej/Xn−1 = ei). These probabilities form a stochastic matrix

P = (pij) with
∑k

j=1 pij = 1, ∀i ∈ {1, . . . , k}, called transition matrix.
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The Markov property allows us to write an expression for the probability of
a transition in one, two, three or more steps. For n = 1 this probability is simply
pij and is given by the position (i, j) of the transition matrix P . For n = 2 the

probability that the chain is in state ej at step 2 is p
(2)
ij =

∑k

r=1 pirprj , and is the

position (i, j) of the matrix P 2. In general, the probability that the process is in

state ej n steps after being in state ei is given by p
(n)
ij =

∑k

r=1 p
(m)
ir p

(n−m)
rj , 0 ≤

m ≤ n, and is the position (i, j) of the matrix P n = P mP n−m (by the rules for
matrix multiplication).

The conditions











p
(1)
ij = pij

p
(n)
ij =

k
∑

r=1

p
(1)
rj · p

(n−1)
ir , for all n ≥ 2

are called the Kolmogorov–Chapmann equations associated with the homoge-
neous Markov chain whose transition matrix is P = (pij)1≤i,j≤k ([4]).

We denote the initial probabilities by means of the vector q0 = (q1
0 , . . . , q

k
0 ),

and for each n ≥ 1 we consider the vector qn = (q1
n, . . . , qk

n), where qj
n (1 ≤ j ≤ k)

is the probability to reach the state ej after n steps of the random process.
Notice that we have qn = q0P

n, for each n ≥ 1. So, in order to determine the
distribution qn it is enough to study the matrix P n. In [2] the natural powers
of the transition matrix of a finite and homogeneous Markov chain within the
framework of membrane computing are computed. Moreover, the limit of the
sequence {P n : n ∈ N} of these matrices allows us to obtain the distribution
limit in the case that it exits, and to know the stationary distribution of the
process. For more details see [3] and [4].

There is a well known result [5] relating the existence of the limit of the
sequence {P n : n ∈ N} with the classification of the states of the Markov chain.
So, we give now a classification of the states of a Markov chain and the condition
by the existence of the limit.

A state ej is accessible from the state ei, denoted by ei → ej , if there is an

integer n > 0 such that p
(n)
ij > 0. Two states ei, ej are communicating states,

denoted by ei ↔ ej , if ei is accessible from ej and ej is accessible from ei. The
relation of communication is an equivalence, so we can consider the equivalence
classes associated with it.

The following result shows that in a finite Markov chain with k states, if we
know all the paths of length k − 1, then we can know all the communicating
states.

Proposition 1. Let ei, ej be states of a finite Markov chain with k states such
that ej is accessible from ei. Then there exists a path with length smaller than k
from ei to ej .

This result can be proved by substituting the nodes repeated in the path by
only one copy of each of them.



232 M. Cardona et al.

A state ei is called recurrent if for all ej such that ei → ej , then ej → ei. On
the contrary, if there exist j such that ei → ej but ej 6→ ei (that is, there is an

integer number m and a state ej such that p
(m)
ij > 0 but p

(n)
ji = 0 for all n ∈ N),

the state ei is called transient. If in an equivalence class there exists a recurrent
(resp. transient) state, then every state of the class is recurrent (respectively)
transient. If the class of a recurrent state ei is formed only by this state, we say

that ei is an absorbent state (p
(n)
ij = 0 for all ej 6= ei and for all n ∈ N).

Given a state ei such that there exists n > 0 and p
(n)
ii > 0, we define its

period as:

d(i) = g.c.d.{n ≥ 1 | p
(n)
ii > 0}.

All states that belong to the same class have the same period. If the period is 1,
the class is said to be aperiodic, otherwise we refer to it as a periodic class.

The problem of classification is an important one in the mathematical study
of Markov chains and related stochastic processes because it allows us to study
their asymptotic behavior. If we think a Markov chain as a system evolving along
the time, then we are interested in analyzing how that evolution is carried out.
For that, we study the existence and the uniqueness of the stationary distribu-
tions, and the convergence to stationarity starting from any initial distribution.
That study is related with the number of recurrent classes of a finite Markov
chain.

There are some necessary conditions for the existence of stationary distribu-
tions, that is to say, there are some results which provide us with information
about the existence of the limit of the sequence of the matrix powers of a finite
Markov chain ([5]).

Theorem 1. For any Markov chain with finite states, there exists a unique
stationary distribution if and only if the set of states contains precisely one
recurrent class.

Theorem 2. A necessary and sufficient condition for the existence of a limit
distribution is that there is, in the set of states of the chain, exactly one aperiodic
recurrent class.

2.2 Membrane Systems

Membrane computing is a branch of Natural Computing, considered in October
2003 by Thomson Institute for Scientific Information (ISI) as a Fast Emerging
Research Front in Computer Science [9]. It was initiated at the end of 1998 by Gh.
Păun (by a paper circulated at that time on web and published in 2000 [6]). Since
then it has received important attention from the scientific community. Details
can be found at the web page http://psystems.disco.unimib.it, maintained
in Milano under the auspices of the European Molecular Computing Consortium,
EMCC.



Classifying States of a Finite Markov Chain 233

In short, one abstracts computing models from the structure and the func-
tioning of living cells, as well as from the organization of cell in tissues, organs,
and other higher order structures. The main components of such a model are
a cell-like membrane structure, in the compartments of which one places multi-
sets of symbol-objects which evolve in a synchronous maximally parallel manner
according to given evolution rules, also associated with the membranes. The ob-
jects can also be described by strings, they can pass through membranes, can
exit the system; in turn, membranes can be divided, dissolved, created.

A large variety of computing models, called P systems, were considered in this
framework, based on the fundamental concept of biological membrane; the re-
spective models are distributed (compartmentalized) parallel computing devices,
processing multisets of abstract objects by means of various types of evolution
rules. Parallelism, communication, non-determinism, synchronization, dynamic
architecture of the model, etc. are central concepts of the theory, with biological,
mathematical, and computer science sources of inspiration.

In this way, a comprehensive and systematic interdisciplinary research area
was developed, of a high generality and versatility, where models can be de-
vised for a large range of processes where compartmentalization and multiset
processing are natural ingredients. Thus, although the initial goal of membrane
computing was only to learn new ideas, tools, techniques from cell biology to the
help of standard computers, much in the same way as, e.g., evolutionary com-
puting suggests algorithms to be implemented on the electronic computer, the
membrane computing became a new framework for building models for a large
variety of processes, especially from biology (cell biology, tissues, populations of
bacteria, controlling networks of complex phenomena, tumor growth, etc.), but
also from linguistics, management, with several applications to computer science
(computer graphics, approximative solutions to computationally hard problems,
modeling parallel architectures, cryptography).

Most of these models were proven to be computationally universal, able to
compute whatever a Turing machine can compute. In the case when an enhanced
parallelism is available, by means of membrane division, string-object replication,
or membrane creation, polynomial (often linear) time solutions to NP-complete
problems were found.

In many variants, P systems are seen as devices of a generative nature, that
is, from a given initial configuration several distinct computations may be de-
veloped, in a non–deterministic manner, producing different outputs.

In this paper we work with P systems with external output and performing
computing tasks. For example, if a certain natural number, n, is encoded by the
multiplicity of a special object in the initial configuration and we consider the
cardinality of the multiset contained in the environment of a halting configu-
ration as the result of a successful computation, then we can interpret that to
mean that the system computes a partial function from natural numbers onto
sets of natural numbers.

In the following, we assume that the reader is familiar with the basic notions
of P systems, and we refer, for details, to [7].
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3 Computing the classification of the steps of a finite

Markov chain

3.1 Designing a P System

The goal of this paper is to obtain the classification of the states of a finite and
homogeneous Markov chain within the framework of the cellular computing with
membranes.

Let Pk = (pij)1≤i,j≤k be a boolean matrix associated to a finite and homo-
geneous Markov chain of order k such that pij = 0 if the transition from ei to ej

is not possible, and pij = 1 if the transition from ei to ej is possible (that is, Pk

is the incidence matrix of the directed graph associated with the Markov chain).
The solution presented in this paper is a a semi–uniform solution to the

problem of classification, in the following sense: we give a family Π = {Π(Pk) :
k ∈ N}, associating with Pk a P system with external output, such that:

– There exists a deterministic Turing machine working in polynomial time
which constructs the system Π(Pk) from Pk.

– The output of the P system Π(Pk) provides the classification of the k states
of the Markov chain as well as the period of the recurrent classes.

We associate with the matrix Pk a P system of degree 4 with external output,

Π(Pk) = (Γ (Pk), µ(Pk),M1,M2,M3,M4, R, ρ)

defined as follows:

– Working alphabet:

Γ (Pk) = {aij , bij , dij , tij : 1 ≤ i, j ≤ k, } ∪ {cr : 0 ≤ r ≤ 2k + 2} ∪
{tijur : 1 ≤ i, j, u ≤ k, 0 ≤ r ≤ k} ∪ {βi : 0 ≤ i ≤ α + 1} ∪
{sijr : 1 ≤ i, j ≤ k, 0 ≤ r ≤ k} ∪ {Ai1, γi : 1 ≤ i ≤ k} ∪
{Tij , Rij : 1 ≤ i, j ≤ k}

where α = 2k + 4 + dlg2ke + (k−1)(k+2)
2 .

– Membrane structure: µ(Pk) = [1 [2 [3 [4 ]4 ]3 ]2 ]1.
– Initial multisets:

M1 = ∅; M2 = {β0}; M3 = {c0};

M4 = {sii0 t
pij (k−1)
ij : 1 ≤ i, j ≤ k}.

– The set R of evolution rules consists of the following rules:

• Rules in the skin membrane labeled by 1:

r1 = {bijbji → aijaji : 1 ≤ i < j ≤ k}

r2 = {bij → γi; γiaijdipdjp → (TipTjp, out) : 1 ≤ i, j, p ≤ k}

r3 = {γidip → (Tip, out) : 1 ≤ i, j, p ≤ k}

r4 = {aijdip → (Rip, out) : 1 ≤ i, j, p ≤ k}

r5 = {di1 → (Ai1, out) : 1 ≤ i ≤ k}
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• Rules in the membrane labeled by 2:

r6 = {b2
ij → bij : 1 ≤ i, j ≤ k} ∪{βi → βi+1 : 0 ≤ i ≤ α} ∪{βα+1 → δ}.

r7 = {d2
ij → dij : 1 ≤ i, j ≤ k}

r8 = {dijdi(j+l) → dijdil : 1 ≤ i ≤ k, 2 ≤ j + l ≤ k}

• Rules in the membrane labeled by 3:

r9 = {tijur → (tijsuj(r+1), in4) buj : pij = 1, u 6= j, 1 ≤ i, j, u ≤ k, 0 ≤ r < k}

r10 = {tijuk → (tij , in4) buj : pij = 1, u 6= j, 1 ≤ i, j, u ≤ k}

r11 = {tijjr → (tij , in4) dj(r+1) : pij = 1, 1 ≤ i, j ≤ k, 0 ≤ r < k}

r12 = {tijjk → (tij , in4) : pij = 1, 1 ≤ i, j ≤ k}

r13 = {cr → cr+1 : 0 ≤ r ≤ 2k + 1} ∪ {c2k+2 → δ}

• Rules in the membrane labeled by 4:

r14 = {suirt
pi1

i1 . . . tpik
ik → (tpi1

i1ur . . . tpik

ikur , out) : 1 ≤ u, i ≤ k, 0 ≤ r ≤ k}.

– The partial order relation ρ over R consists of the following relations on the
rules of R:
• Priority relation in the skin membrane: {r1 > r2 > r3 > r4 > r5}

• Priority relation in the membrane labeled by 2: {r7 > r8}

• Priority relation in the membranes labeled by 3: ∅.

• Priority relation in the membranes 4: ∅.

3.2 An Overview of Computations

At the beginning, the skin membrane is empty. The membrane labeled by 2 only
contains the object β0 which is a counter used to dissolve that membrane in the
(α+2)–th step, where α = 2k+4+dlg2ke+(k−1)(k+2)/2. The membrane labeled
by 3 contains the object c0 which is a counter used to dissolve the membrane
2 in the (2k + 3)-th step. Initially, the membrane labeled by 4 contains: (a)
objects sii0 (1 ≤ i ≤ k) encoding the states ei of the chain; and (b) objects tij
(1 ≤ i, j ≤ k) encoding the elements pij of the boolean matrix associated to the
transition matrix of the Markov chain.

In the first 2k + 3 steps one applies rules only in the internal membranes
labeled by 2, 3 and 4. During this (so called) first stage, we determine the acces-
sibility between states (encoded by the objects bij meaning that we can reach
ej from ei) as well as the recurrent time of each state (encoded by the ob-
jects dij meaning that there exists a path from ei to ei with length j). In the
even steps, the rules of membrane 4 will consume all the objects suir and some
objects tij , sending to membrane 3 some objects tijur . In the odd steps, only
rules in membrane 3 are applied (but not in membrane 4, because there does
not exist objects suir in that membrane), sending new objects tij and objects
suj(r+1) (with u 6= j) to that membrane and producing objects buj and djr in
membrane 3. The first stage finalizes in the configuration C2k+3 when the rule
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c2k+3 → δ dissolves membrane 3. In this moment we have some objects tij (with
1 ≤ i, j ≤ k) in membrane 4, objects djr , buj (with 1 ≤ j, u, r ≤ k) and the
object β2k+3 in membrane 2 (notice that in each step of this first stage the rule
βi → βi+1 of membrane 2 has been carried out). The skin region is empty.

The second stage begins with the execution of the (2k+4)–th step. During this
stage we eliminate repeated copies of objects bij and dij in membrane 2, and we
compute the period of each state (encoded in the second subscript of the objects
d). The rules of membrane 2 permit transforming two copies of the object bij and
dij into one copy, and the period of each state ei is calculated by means of the
rules of type (8). For that, we need at most α = 2k+4+dlg2ke+(k−1)(k+2)/2.
steps. This stage finalizes when the rule βα+1 → δ dissolves membrane 2 in the
(α + 2)–th step. This stage is a non-deterministic one.

Finally, the third stage is the output phase, and begins with the execution of
the (α+3)–step. In this stage the objects bijbji are transformed into the objects
aijaji by means of the rule r1 (meaning that the states ei and ej belongs to the
same equivalence class). When this rule cannot be applied, then the transient
objects are expelled to the environment applying the rules of types (2) and (3).
After that, the rule r4 sends the recurrent states and their period to the external
environment. The process finalized when the rule r5 sends the absorbent states.

3.3 Formal Verification

Given a computation C of the P system Π(Pk), for each m ∈ N we denote by Cm

the configuration of the system obtained after the execution of m steps. For each
label l ∈ {1, 2, 3, 4}, we denote by Cm(l) the multiset of objects contained in the
membrane labeled by l in the configuration Cm. Also, we denote by Cm(env) the
content of the environment of the system in the configuration Cm.

First of all, we show that during the first stage the objects sijr codify the
existence of a path from ei to ej with length r, and the objects tijur codify the
existence of a path from eu to ej with length r and with ei next to last node.

Lemma 1. For each r such that 1 ≤ r ≤ k we have the following:

(a) If r = 1, then for each i, j such that 1 ≤ i, j ≤ k, the object tiji0 belongs to
C1(3) if and only if there exists a path from ei to ej with length 1 and with
ei being next to last node.
If r > 1, then for each i, j, u such that 1 ≤ i, j, u ≤ k, the object tiju(r−1)

belongs to C(2r−1)(3) if and only if there exists a path from eu to ej with
length r and with ei being next to last node.

(b) For each i, j such that 1 ≤ i, j ≤ k, i 6= j, the object sijr belongs to C2r(4)
if and only if there exists a path from ei to ej with length r.

Proof. We prove the lemma by induction on r.

– Let us suppose that r = 1.
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(a) Let i, j be such that 1 ≤ i, j ≤ k.
If tiju0 ∈ C1(3), having in mind the composition of the initial configu-
ration, there exists objects sii0 and tij in C0(4). So, pij = 1 and (ei, ej)
is an arc of the graph associated with the Markov chain. Hence, there
exists a path from ei to ej with length 1 and with ei next to last node.
Conversely, if there exists a path from ei to ej with length 1 and with
ei next to last node, then pij = 1. So, the object tij belongs to C0(4).
Having in mind that sii0 ∈ C0(4), and applying the rules of type (14) we
have tiji0 ∈ C1(3).

(b) Let i, j be such that 1 ≤ i, j ≤ k, i 6= j.
Let us suppose that sij1 ∈ C2(4). Then that object has been produced
by an object tijio belongs to C1(3) and applying the rules of type (9).
From a) we deduce that there exists a path from ei to ej with length 1
(and with ei next to last node).
If there exists a path from ei to ej with length 1, then from a) we deduce
that the object tiji0 belongs to C1(3). Applying the rule of type (9) we
obtain that sij1 ∈ C2(4).

– Let r ≥ 1 and r < k and let us suppose that conditions (a) and (b) hold for
r. Let us show that these conditions hold for r + 1.
(a) Let i, j, u be such that 1 ≤ i, j, u ≤ k.

If the object tijur belongs to C2r+1(3), then in the (2r + 1)–th step the
rules of type (14) has been applied in membrane 4, in order to produce
the object tijur . Then, the objects suir and tij must belongs to C2r(4).
By the induction hypothesis there exists a path from eu to ei of length r.
Having in mind that tij ∈ C2r(4), it follows that (ei, ej) is an arc of the
graph associated. Consequently there exists a path from eu to ej with
length r + 1 with ei next to last node.
Let us suppose that there exists a path from eu to ej with length r + 1
with ei next to last node. Then there is a path from eu to ei of length r.
By the induction hypothesis, the object suir belongs to C2r(4). Moreover,
pij = 1 because (ei, ej) is an arc of the graph associated, so tij belongs
to C2r(4). Applying the rules of type (14), we have tijur ∈ C2r+1(3).

(b) Let i, j be such that 1 ≤ i, j ≤ k, i 6= j.
If the object sij(r+1) belongs to C2r+2(4), then there exists u (1 ≤ u ≤ k)
such that the object tujir belongs to C2r+1(3). By the induction hypoth-
esis, there exists a path form ei to ej of length r + 1 with ei next to last
node. Then, there exists a path from ei to ej of length r + 1.
Conversely, let us suppose that there exists a path from ei to ej of length
r + 1. Let u be such that eu is the next to last node of this path. By
induction hypothesis, we have tujir ∈ C2r+1(3). Applying the rules of
type (9) we obtain that the object sij(r+1) belongs to C2r+2(4). �

Lemma 2. For each r such that 1 ≤ r ≤ k we have the following:

(a) There are i, j, u such that 1 ≤ i, j, u ≤ k, tiju(r−1) ∈ C2r−1(3), sijr ∈ C2r(4).
(b) For all i, j, u, z such that 1 ≤ i, j, u, z ≤ k, we have:

tijuz /∈ C2r(3), sijz /∈ C2r−1(4), t
pij(k−1)
ij ∈ C2r(4)
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Proof. By induction on r. First of all, recall that

C0(4) = {sii0t
pij(k−1)
ij : 1 ≤ i, j ≤ k}, C0(3) = {c0}.

Let i, j be such that 1 ≤ i, j ≤ k and pij = 1. Applying the rules of type (14)
at the initial configuration we have tiji0 ∈ C1(3). Then, applying the rules of
type (9) in the second step we have sij1 ∈ C2(4). Moreover, each object tij
that has evolved in the first step, returns to membrane 4 in the next step. So,

t
pij(k−1)
ij ∈ C2(4), for all i, j (1 ≤ i, j ≤ k).

Having in mind that in the first step all objects sii0 are consumed, we have
sijz /∈ C1(4), for all i, j, z (1 ≤ i, j, z ≤ k) Hence, tijuz /∈ C2(3), for all i, j, u, z
(1 ≤ i, j, u, z ≤ k).

Assuming the result holds for r < k (r ≥ 1), we prove the result holds for
r + 1.

By the induction hypothesis, there exist i, j (1 ≤ i, j ≤ k) such that sijr ∈
C2r(4). But there is u (1 ≤ u ≤ k) such that tuj ∈ C2r(4); applying the rules
of type (14) we have we have tijur ∈ C2r+1(3). Then, applying the rules of type
(9) in the next step we have suj(r+1) ∈ C2r+2(4). Moreover, each object tij
that has evolved in the r–th step, returns to membrane 4 in the next step. So,

t
pij(k−1)
ij ∈ C2r+2(4), for all i, j (1 ≤ i, j ≤ k).

Having in mind that in the r–th step all objects sijr which belong to C2r(4)
have evolved, we have sijz /∈ C2r+1(4), for all i, j, z (1 ≤ i, j, z ≤ k) Hence,
tijuz /∈ C2r+2(3), for all i, j, u, z (1 ≤ i, j, u, z ≤ k). �

Proposition 2. For each i, j such that 1 ≤ i, j ≤ k we have the following:

(1) If i 6= j, then the following assertions are equivalent:

(a) There exists a path from ei to ej.

(b) The object bij belongs to C2k+2(3).

(c) The object bij belongs to C2k+3(2).

(2) The following conditions are equivalent

(a) There exists a path from ei to ei with length j.

(b) The object dij belongs to C2k+2(3).

(c) The object dij belongs to C2k+3(2).

Proof. Let i, j be such that 1 ≤ i, j ≤ k.

(1) Let i 6= j and let us suppose that there exists a path from ei to ej . Let r ≥ 1
be the length of that path r, and let eu be the next to last node of that path.
From Lemma 1, we have tuji(r−1) ∈ C2r−1(3). Applying the rules of type (9)
or (10) we obtain that bij ∈ C2r(3). Hence bij ∈ C2k+2(3).

Conversely, let us suppose that bij ∈ C2k+2(3). Then, from Lemma 2 there
exists r (1 ≥ r ≤ k) such that tuji(r−1) ∈ C2r−1(3). From Lemma 1 we
deduce that there exists a path from ei to ej .

Obviously, bij ∈ C2k+2(3) ⇐⇒ bij ∈ C2k+3(2).
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(2) Let us suppose that there exists a path from ei to ei of length j. Then,
there exists a state eu and a path from ei to eu of length j − 1, and with
(eu, ei) being an arc of the associated graph. From Lemma 1, the object
tuii(j−1) belongs to C2j−1(3). Applying the rules of type (11) or (12) we
have dij ∈ C2j(3). Hence, dij ∈ C2k+2(3).
Conversely, let us suppose that dij ∈ C2k+2(3). Then, from Lemma 2 there
exists r (1 ≥ r ≤ k) such that tuii(j−1) ∈ C2r−1(3). From Lemma 1 we
deduce that there exists a path from ei to ei with length j.
Obviously, dij ∈ C2k+2(3) if and only if dij ∈ C2k+3(2). �

Proposition 3. If α = 2k + 4 + dlg2ke + (k − 1)(k + 2)/2, then:

Cα+1(2) = {bij : 1 ≤ i, j ≤ k, i 6= j, there is a path from ei to ej} ∪
{dip : 1 ≤ i, p ≤ k, p is the period of the state ei} ∪ {βα+1}.

Proof. Applying repeatedly the rules βi −→ βi+1 (0 ≤ i ≤ α) starting from the
initial configuration, we have βα+1 ∈ Cα+1(2).

From Proposition 2 we deduce that in membrane 2 of the configuration C2k+3

we have objects bij , with different multiplicities, such that there is a path from
the state ei to state ej , and objects dij , with multiplicity 1, such that there is
a path from the state ei to state ei with length j. Then, applying the rules of
type (6) in, at most, dlg2ke steps, we get that the multiplicity of each object is
1. Simultaneously, applying the rules of type (7) and (8) in at most dlg2ke+(k−
1)(k + 2)/2 steps we produce the objects dip, where p is the greatest common
divisor of {dij : dij ∈ C2k+3(2)}. �

Theorem 3. Let Cf be the final configuration of the computation C of the sys-
tem Π(Pk). Then:

(a) The state ei is transient with period p if and only if Tip ∈ Cf (env).
(b) The state ei is recurrent (and not absorbent) with period p if and only if

Rip ∈ Cf (env).
(a) The state ei is absorbent (with period 1) if and only if Ai1 ∈ Cf (env).

Proof. (a) Let us suppose that ei is a transient state. If the equivalence class of
ei has more than one element, then we can apply the rules of type (1) in the
membrane Cα+2 producing objects aij and aji. In this case, there is r (1 ≤ r ≤ k)
such that the object bir belongs to Cα+2(1) but bri /∈ Cα+2(1). So, in the (α+4)–
th step the object γi is produced applying the rules of type (2). Then in the next
step (and using the object dip) we obtain that Tip ∈ Cα+5(env), where p is the
period of ei (from Proposition 3).

If the equivalence class of ei is a singleton, then the rules of type (1) cannot be
applied in the configuration Cα+2. So, we apply the rules of type (2) producing
the object γi that in the next step produces (together with the object dip) the
object Tip in the environment (that is, Tip ∈ Cα+4(env)).

Reciprocally, let us suppose that Tip ∈ Cα+4(env)). Then, the object γi must
be generated in order to can apply the rules of types (2) and/or (3). If only the
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rules of type (2) are applied, then there are j, j ′ (1 ≤ j, j′ ≤ k) such that ej

is accessible from ei and ei is accessible from ej , and ei, ej′ are communicating
states. Hence, ei is a transient state whose equivalence class has more than one
object. If the rules of type (3) are applied, then ei is a transient state whose
equivalence class is a singleton.

(b) Let us suppose that the state ei is recurrent (and not absorbent) with
period p. Then, the equivalence class of ei has more than one object and there is
no transient state belongs to that class. So, the rules of type (1) will be applied in
the configuration Cα+2 and the object γi cannot be produced. Hence, applying
the rules of type (4) in the next configuration we have Rip ∈ Cα+4(env).

Reciprocally, if Rip ∈ Cf (env) then the rule aijdip → (Rip, out) has been
applied (for some j, p with 1 ≤ j, p ≤ k). For that, the objects aij and aji have
been produced and the object γi has not been generated. Consequently, the state
ei is recurrent and its equivalence class has more than one object (that is, it is
not an absorbent state).

(c) Let us suppose that the object ei is absorbent (consequently its period
is 1). In this case, it equivalence class is a singleton. So, there is no j (1 ≤
j ≤ k) such that bij and bji belongs to Cα+2(1). Then the rules of type (1)
are not applicable for i. Applying the rule di1 → (Ai1, out) we obtain that
Ai1 ∈ Cf (env).

Reciprocally, if Ai1 ∈ Cf (env), then the object di1 belongs to membrane 1 in
the next to last configuration. So, the objects aij has not been produced. Then,
the state is recurrent and its equivalence class has only one object. �

4 Conclusions

One of the central issues in Markov chain theory is the asymptotic long–term
behavior of Markov chains.

Due to different results concerning the existence (and the uniqueness) of a
stationary distribution, the problem of classification of states is an important one
in the mathematical study of Markov chains and related stochastic processes.

In this paper we give an efficient (semi–uniform) solution of the problem
of classification in the framework of the cellular computing with membranes.
The solution is semi–uniform because for each incidence matrix of the directed
graph associated with a Markov chain, a specific P system with external output
is designed. The solution is efficient, because it is linear in the number of states
of the Markov chain. Furthermore, the amount of resources initially required to
construct the system is polynomial in the order of the Markov chain.

The paper also provides a new example of formal verification of P systems
designed to solve a problem (in this case a problem of classification, not a de-
cision problem), following a specific methodology. These examples are always
interesting, for instance, in order to find systematic processes of formal verifica-
tion in a model of computation oriented to machines, like the cellular model, a
case where it is well known that the mechanisms of verification are often a very
hard task.
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