
On Communication in Tissue P Systems:

Conditional Uniport

Sergey Verlan1, Francesco Bernardini2, Marian Gheorghe3,
Maurice Margenstern4

1LACL, Département Informatique, Université Paris 12
61 av. Général de Gaulle, 94010 Crétiel, France

E-mail: verlan@univ-paris12.fr

2Leiden Institute of Advanced Computer Science, Universiteit Leiden
Niels Bohrweg 1, 2333 CA Leiden, The Netherlands

E-mail: bernardi@liacs.nl

3Department of Computer Science, The University of Sheffield
Regent Court, Portobello Street, Sheffield S1 4DP, UK

E-mail: M.Gheorghe@dcs.shef.ac.uk

4Université Paul Verlaine - Metz, UFR MIM, LITA, EA 3097
Ile du Saulcy, 57045 Metz Cédex, France

E-mail: margens@univ-metz.fr

Abstract. The paper introduces (purely communicative) tissue P sys-
tems with conditional uniport. Conditional uniport means that every
application of a communication rule moves one object in a certain direc-
tion by possibly using another one as an activator which is left untouched
in the place where it is. Tissue P systems with conditional uniport are
shown to be computationally complete in the sense that they can recog-
nise all recursively enumerable sets of natural numbers. This is achieved
by simulating deterministic register machines.

1 Introduction

Membrane computing is an emerging branch of natural computing which deals
with distributed and parallel computing devices of a bio-inspired type, which are
called membrane systems or P systems (see [14], [15], and also [1] for a compre-
hensive bibliography of P systems). P systems, originally devised by Gh. Păun
in [14], are introduced as computing devices which abstract from the structure
and functioning of living cells - they are defined as a hierarchical arrangement of
regions delimited by membranes (membrane structure), with each region having
associated a multiset of objects and a finite set of rules.

Communication of objects through membranes is one of the fundamental fea-
tures of every membrane system and this naturally led to the question of closely
investigating the power of communication, that is, considering purely commu-
nicative P systems where objects are never modified but they just change their
place within the system. A first attempt to address this issue was done in [11] by

508 S. Verlan et al.

considering certain “vehicle-objects” (an abstraction for plasmids or for vectors
from gene cloning) which actively carry objects through membranes. Then, the
bio-chemical idea of membrane transport of pairs of molecules was considered
in [13] by introducing the notion of P systems with symport/antiport. When two
chemicals can pass through a membrane only together, in the same direction, the
process is called symport ; when the two chemicals can pass only with the help of
each other, but in opposite directions, we say that we have an antiport process
(see [2]). Such a mechanism has been formalised and generalised in P systems
by considering multisets of objects, here denoted by x, y, that are moved across
the membranes by means of rules of the form (x, in), (x, out) (symport rules),
and (x, out; y, in) (antiport rules); x, y can be of any size but they cannot be
empty. As happens in few other models (e.g., see the billiard ball model [19], the
chip firing game [9], or railway simulation [10]), computing by communication
turns out to be computationally complete: by using only symport and antiport
rules, we can generate all Turing computable sets of numbers [13]. However, as in
the aforementioned models of other inspiration, in order to generate all Turing
computable sets, some infinity must be present and, in P systems with sym-
port/antiport, this is provided in the form of an infinite supply of objects taken
from an external environment. Several subsequent works have been dedicated to
improve this result in what concerns both the number of membranes used and
the size of symport/antiport rules used inside the membranes. We refer to [17]
for a survey of these investigations.

The class of membrane computing models was later extended to tissue P
systems [15]: a variant of P systems where the underlying structure is defined
as an arbitrary graph. Nodes in the graph represent cells (i.e., elementary mem-
branes) that are able to communicate objects alongside the edges of this graph
[15]. From a biological point of view, tissue P systems are seen as an abstract
model of cells in multicellular organisms where they form a multitude of differ-
ent tissues, arranged into organs performing various functions [2]. In particular,
purely communicative tissue P systems with symport/antiport were investigated
in [15] by showing completeness results for systems using rules of different sizes
and different structures for the underlying graph. More recently, it was proved
in [3] that tissue P systems with symport/antiport rules of a minimal size (i.e.,
rules of the forms (a, in), (a, out), (a, out; b, in), with a, b objects from a given
alphabet) are computational complete and two cells suffice.

In this paper we consider tissue P systems with a different model of communi-
cation called conditional uniport. Conditional uniport means that every applica-
tion of a communication rule moves one object in a certain direction by possibly
using another one as an activator which is left untouched in the place where it is.
In other words, rules are assigned to the edges of the graph and they represent
channels of communication; in the cell placed at one end of an edge, an object is
used to activate the channel and either receive another object (in a single copy)
from the cell at the other end of that edge, or send another object (in one single
copy) to the cell at the other end of the edge. The biological motivation for
conditional uniport is twofold. On the one hand, in living cells, the active trans-

On Communication in Tissue P Systems: Conditional Uniport 509

port of small molecules is driven by proteic channels: a molecule binds to one of
these channels which, through a change of conformation, is able to release the
molecule outside the compartment (see [2]). On the other hand, in tissues, cell-
to-cell communication depends heavily on extracellular signal molecules, which
are produced by a cell to signal their neighbours or cells that are further away.
In turn, these cells can respond to extracellular signal molecules by means of
particular proteins called receptors; each receptor binds at cell-surface level to
particular signal molecules and it is able to initiate a specific response inside the
cell (see [2]). In both cases, it is only the small molecule or the signal molecule to
be moved in one direction and, in order to be transported or to be recognised, it
requires another object, a proteic channel or a receptor. Such a model of commu-
nication was already investigated in [4] where an evolution-communication model
was considered. This means that, besides conditional uniport, multiset rewrit-
ing rules can be used to modify the objects placed inside the cells. The main
result reported in [4] then showed how to achieve computational completeness
by having only 2 cells and using non-cooperative multiset rewriting rules. Here
we instead focus on the purely communicative case, with the usual assumption
of an infinite supply of objects from the environment, and we show that tissue
P systems with conditional uniport are able to simulate deterministic register
machines by using 24 cells. This means that they can recognise all recursively
enumerable sets of natural numbers.

2 Preliminaries

We recall here some basic notions concerning the notation commonly used in
membrane computing and the few notions of formal language theory we need in
the rest of the paper. We refer to [15], [18] for further details.

An alphabet is a finite non-empty set of abstract symbols. Given an alphabet
V , we denote by V ∗ the set of all possible strings over V , including the empty
string λ. The length of a string x ∈ V ∗ is denoted by |x| and, for each a ∈ V ,
|x|a denotes the number of occurrences of the symbol a in x. A multiset over
V is a mapping M : V −→ N such that, M(a) defines the multiplicity of a

in the multiset M (N denotes the set of natural numbers). Such a multiset

can be represented by a string a
M(a1)
1 a

M(a2)
2 . . . a

M(an)
n ∈ V ∗ and by all its

permutations, with aj ∈ V , M(aj) 6= 0, 1 ≤ j ≤ n. In other words, each string
x ∈ V ∗ identifies a multiset over V defined by Mx = { (a, |x|a) | a ∈ V }.

We also recall the notion of a (deterministic) register machine [12]. A deter-
ministic register machine is the following construction:

M = (Q, R, q0, qf , P),

where Q is a set of states, R = {A1, . . . , Ak} is the set of registers, q0 ∈ Q is the
initial state, qf ∈ Q is the final state and P is a set of instructions (called also
rules) of the following form:

1. (p, A+, q) ∈ P , p, q ∈ Q, p 6= q, A ∈ R (being in state p, increase register A

and go to state q).

510 S. Verlan et al.

2. (p, A−, q, s) ∈ P , p, q, s ∈ Q, A ∈ R (being in state p, decrease register A

and go to q if successful or to s if A is zero).
3. (qf , STOP).

Moreover, for each state p ∈ Q, there is only one instruction of one of the above
types.

A configuration of a register machine is given by the k+1-tuple (q, n1, . . . , nk)
describing the current state of the machine as well as the contents of all registers.
A transition of the register machine consists in updating/checking the value of
a register according to an instruction of one of types above and by changing the
current state to another one. We say that M computes a value y ∈ N on the input
x ∈ N if starting from the initial configuration (q0, x, 0, . . . , 0) it reaches the final
configuration (qf , y, 0, . . . , 0). We say that M recognises the set S ⊆ N if for
any input x ∈ S the machine stops and for any y 6∈ S the machine performs an
infinite computation. It is known that register machines recognise all recursively
enumerable sets of numbers [12].

We may also consider non-deterministic register machines where the first
type of instruction is of the form (p, A+, q, s) and with the following meaning: if
the machine is in state p, then the register A is increased and the current state is
changed to q or s non-deterministically. In this case the result of the computation
is the set of all values of the first register when, starting with the configuration
(q0, 0, 0, . . . , 0), the computation eventually halts. We assume that the machine
empties all registers except the first register before stopping. It is known that
non-deterministic register machines generate all recursively enumerable sets of
non-negative natural numbers starting from empty registers [12].

3 The Model

Now we formally introduce the notion of tissue P systems with conditional uni-
port.

Definition 1. A tissue P systems with conditional uniport (a TPCU, for short)
of degree n ≥ 1 is a construct

T = (V, E, w1, . . . , wn, R, cI)

where:

1. V is a finite alphabet;
2. E ⊆ V is the set of symbols which appear in the environment;
3. wi ∈ V ∗, for all 1 ≤ i ≤ n, is the multiset initially associated to cell i;
4. R is a finite set of rules of the forms:

(a) (i, a → j) with 1 ≤ i, j ≤ n, i 6= j and a ∈ V ,
(b) (i, a → j, b) with 1 ≤ i, j ≤ n, i 6= j and a, b ∈ V ,
(c) (i, b, a → j) with 1 ≤ i, j ≤ n, i 6= j and a, b ∈ V ,
(d) (0, a → j, b) with 1 ≤ j ≤ n and a, b ∈ V ,
(e) (i, b, a → 0) with 1 ≤ i ≤ n and a, b ∈ V ,

On Communication in Tissue P Systems: Conditional Uniport 511

(f) (i, a → 0) with 1 ≤ i ≤ n, and a ∈ V ,

(g) (0, a → i) with 1 ≤ i ≤ n, and a ∈ V ;

5. cI ∈ {1, . . . , n} is the input cell.

Thus, a TPCU is defined as a collection of n ≥ 1 cells denoted by 1, 2, . . . , n, each
one of them containing a multiset over the given alphabet V. We also considers
that the environment contains infinitely many copies of the objects in E and
initially it does not contain any object in V \ E. Cells are allowed to interact
with each other and with the environment through the application of the rules in
R. A rule (i, a → j) specifies that an object a may be moved from cell i to cell j

without any condition. A rule (i, a → j, b) with 1 ≤ i, j ≤ n, i 6= j and a, b ∈ V ,
specifies that if an object b is in cell j, then an occurrence of symbol a may be
moved from cell i to cell j. A rule (i, b, a → j), with 1 ≤ i, j ≤ n, i 6= j and
a, b ∈ V , specifies that if an object a and an object b are both present inside cell
i, then that object a may be moved from cell i to cell j. Similarly, in presence of
an object b inside cell j, a rule (0, a → j, b) may be used to move an occurrence
of object a from the environment, denoted by 0, to cell j; if an object a and an
object b are both present inside cell i, then a rule (i, b, a → 0) may be used to
move that object a from cell i to the environment. Rules (i, a → 0), (i, a → 0)
can instead be used to move an object a from cell i to the environment and vice
versa without any condition.

As usual in membrane computing, we adopt a non-deterministic maximal
parallel strategy for the application of the rules which makes the system transit
from one configuration to the other. Specifically, we have that, in each step, all
the rules that can be applied, depending on the current distribution of objects
inside the cells, must be applied. Objects are non-deterministically assigned to
the rules with the only restriction that, within the same step, the same occurrence
of the same symbol is used by at most one rule. This means that an occurrence of
a symbol cannot be simultaneously moved and used to move another object, and
can be used to move at most one occurrence of another symbol. However, the
same rule can be used in parallel many different times to move many different
objects. Moreover notice that rules do not modify the objects involved in their
applications, hence, whenever a rule involves two objects, one is moved into some
other cell whereas the other one is left untouched in the place where it is. We
also remark the difference with respect to the more standard notion of promoters
from [15]: promoters are multisets of objects that are used to activate a whole
set of rules; the activated rules are then applied in a non-deterministic maximal
parallel manner irrespectively of the multiplicity of the promoting multisets.

Let T = (V, E, w1, . . . , wn, R, cI) be a TPCU of degree n ≥ 1. A configuration
of T is any tuple (w′

1, w
′

2, . . . , w
′

n) with w′ii ∈ V ∗, for all 1 ≤ i ≤ n. Then, given a
multiset x ∈ V ∗, TPCU T recognises multiset x if, by starting from configuration
(w1, . . . , x wI , . . . , wn), after a finite sequence of transitions obtained by applying
the rules as described above, it produces a final configuration where no more
rules can be applied to the objects placed inside the cells and the environment.
Moreover, TPCU T recognises a family of multisets M if, for all x ∈ M , T

512 S. Verlan et al.

recognises x. If that is the case, we also say that TPCU T recognise the set of
natural numbers N(M) = { |x| |x ∈ M }.

Finally, we naturally associate to each TPCU a communication graph which
represent the structure of the system as it is induced by the rules provided in
the definition of the system.

Definition 2. Let T = (V, E, C1, . . . , Cn, R, cO) be a TPCU. The communica-
tion graph of T , denoted by Γ (T), is the undirected graph ({1, . . . , n}, A) where
{i, j} ∈ A if and only if, there is a rule (i, a → j, b) or (i, b, a → j) in R for
some a, b ∈ O.

Thus, given a TPCU, its communication graph is the graph containing a node
per each cell in the system and an edge between every two cells which are allowed
to interact by means of some rule. As we will see, this notion is particularly useful
to graphically represent the structure of a given TPCU.

In the next section, we introduce some macro-elements (macros, for short)
that group several conditional uniport rules. Macros are seen as sub-functional
units which can be combined to form larger “blocks of cells” dedicated to per-
form some specific tasks. Specifically, we will define macros necessary to con-
struct blocks which simulate incrementing and decrementing instructions of a
deterministic register machine. Thus, in Section 5, we will be able to show the
computational completeness of TPCU’s.

4 Macros

Here we present the details of the macros mentioned at the end of the previ-
ous section; we also introduce a specific graphical representation for them. We
remark that the behaviour of each macro is non-deterministic, but instructions
are grouped in such a way that macros have only one non-looping branch in the
non-deterministic evolution. Then, after the description of these macros, we show
how they can be combined to construct simulation blocks for the incrementing
and decrementing instructions of a deterministic register machine.

4.1 Synchronisation of two signals

This macro, shortly denoted as syn2, is represented in the left part of Figure 1.
This macro aims to synchronise symbols s1 and s2 which are treated like

signals. If both of them are present in input cells (1 and 2), then they will
continue to output cells (3 and 4). More precisely, if object s1 is present in cell 1
and object s2 is present in cell 2, then object s1 will go to cell 3 and object s2

will go to cell 4. Notice that the opposite is true as well: if one of the two signals
is missing, then the other one does not move. No assumption about the time
necessary to do this operation is made, i.e., it is not done in one time unit. We
can only affirm that s1 arrives in cell 3 before s2 arrives in cell 4. We give below
necessary rules that implement the syn2 macro.

On Communication in Tissue P Systems: Conditional Uniport 513

Fig. 1. syn2 element

1. (2, s2 → 1, s1)
2. (1, s2, s1 → 3)
3. (a, X → 1, s2)
4. (a, X ′ → 1, X)
5. (1, X ′ → a, s2)
6. (1, X → a)
7. (1, X ′, s2 → a)
8. (a, X ′, s2 → 4)

Symbols X and X ′ are initially present in cell a.
The communication graph induced by these rules is presented in the right

part of Figure 1. It is easy to observe that the above structure, rules and initial
objects permit to obtain the desired behaviour. Indeed, if symbol s1 is present in
cell 1 and there is no symbol s2 in cell 2, then nothing happens. Similarly, if s2

is present and s1 is not present, this part of the system does not evolve. When
both s1 and s2 are present, rule 1 brings s2 to cell 1. After that either rule 2, or
rule 3 will be applied (but not both of them because s2 cannot be involved in
more than one rule). Suppose that rule 3 is applied (the case of rule 2 is similar).
In this case, symbol X is brought to cell 1. At the next step, symbol s1 is sent
by rule 2 to cell 3, hence performing the first part of the synchronisation. At the
same time one of the rules 4 or 6 is applied. If rule 6 is applied, then the system
may loop using rules 3 and 6. Hence, at some moment rule 4 will be applied.
This application brings symbol X ′ in cell 1. This symbol permits to move s2

to cell a and further to cell 4. At the same time symbols X and X ′ return to
their original place in cell a and they are ready for another application of this
macro-element.

We note that the synchronisation of s1 and s2 is the only non-looping evolu-
tion of the subsystem above. Moreover, the same group of cells of Figure 1 with
the same communication graph may be reused for other pairs of signals by just
adding similar rules for each pair of signals to be synchronised.

4.2 Synchronisation and duplication of two signals

This macro, shortly denoted as syndup, is represented in the left part of Figure 2.

514 S. Verlan et al.

Fig. 2. syndup macro

This macro, like the previous one, synchronises symbols s1 and s2: if both of
them are present in input cells (1 and 2), then they will continue to output cells
(3 and 4). At the same time symbol s3 goes from cell 5 to cell 6. If s2 arrives
to cell 4, it will be present there at least one step before s3 arrives to cell 6. In
some sense, s3 is a copy of s2 (which is a little bit time-shifted).

More precisely, if object s1 (resp. s2, s3) is present in cell 1 (resp. cell 2,
cell 5), then object s1 will go to cell 3, object s3 will go to cell 6 and object s2

possibly will go to cell 4. If object s2 is sent to cell 4, then it arrives there one step
before s3 arrives in cell 6. As before, no assumption about the time necessary
to do this operation is made. We give below necessary rules that implement the
syndup macro.

1. (2, s2 → 1, s1)
2. (1, s2, s1 → 3)
3. (5, X → 1, s2)
4. (5, s3 → 1, X)
5. (1, X → a)
6. (1, s3, s2 → 4)
7. (1, s3 → 6)

Symbol X is initially present in cell 5.

The communication graph induced by these rules is presented in the right
part of Figure 2.

Similarly to macro syn2, it is easy to observe that the above structure, rules
and initial objects permit to obtain the desired behaviour. Symbol s1 is sent to
cell 3, while symbol s3 may send symbol s2 to cell 4. Finally, symbol s3 goes to
cell 6. There are two non-looping evolutions of this macro-element corresponding
to the final position of s2.

We remark that cells 1, 2 and 3 may be shared between syn2 and syndup

macros.

On Communication in Tissue P Systems: Conditional Uniport 515

4.3 Infinite loop

This macro, shortly denoted as i-loop, is represented in the left part of Figure 3.

Fig. 3. i-loop macro

This macro has the following meaning. Object s is always a subject to a
computation in cell 1. Hence, if it is not taken from there, the system will never
halt. We give below necessary rules that implement this macro.
1. (1, s → a, Xs)
2. (a, Xs, s → 1)

Symbol Xs is initially present in cell a.
It is clear that above rules will infinitely move symbol s between cells 1 and

a.

4.4 Symbol check

This macro-instruction, shortly denoted as s-check, is represented in the left part
of Figure 4.

Fig. 4. s-check macro

This macro has the following meaning. In presence of object A in cell 1,
symbol s from cell 1 will go to cell 2. Obviously, it corresponds to a rule (1, A, s →
2).

4.5 Incrementing and decrementing a counter

The left part of Figure 5 presents two macros denoted A-plus and A-minus.
These macros are used to increment/decrement the counter A. When object

s (s1) arrives to cell 1, it increments (decrements) counter A and after that s

(s1) goes to cell 2. We give below necessary rules that implement these macros
(cell 0 is the environment):

516 S. Verlan et al.

Fig. 5. A-plus and A-minus macros

1. (3, A → 1, s1)
2. (0, A → 1, s)
3. (1, s → c)
4. (1, s1 → c)
5. (1, A → a)
6. (a, A → b)
7. (a, A → c, s)
8. (a, A → c, s1)
9. (c, A → b)
10. (c, A, s → d)
11. (c, A, s → d)
12. (c, A → d, s)
13. (c, A → d, s1)
14. (d, A → b)
15. (d, s → 2)
16. (d, s1 → 2)
17. (d, s, A → 3)
18. (d, s1, A → 0)

The idea used to implement these macros is quite simple: symbol s (resp. s1)
brings from the environment (resp. cell 3) symbol A into cell 1. If more than
one A is brought, than at least one A will arrive in cell b triggering an infinite
computation. Hence, the only possible halting computation is the one which
brings an object A from the environment, at the next step moves A and s (s1)
from cell 1 to cell a and cell c respectively, and then uses s to move A from cell
a to cell c. After that, in such a computation, both symbols are moved to cell d

, and finally A will go to its place, while s (s1) reaches cell 2.

Notice that, although A-plus and A-minus are seen as separate macros, they
are actually implemented through a unique group of cells containing rules for
simulating both an incrementing and a decrementing instruction. In general, the
same group of cells with the communication graph of Figure 5 can be used to
simulate many different incrementing/decrementing instructions by joining the
sets of rules necessary to simulate each instruction.

On Communication in Tissue P Systems: Conditional Uniport 517

Remark 1. Macros defined above may be joined just by superposing some of their
cells. Hence, a net-like structure may be built using these elements. Moreover,
since we place objects in cells and after that move them, the obtained system
has similarities with Petri Nets (e.g., see [16]). However, there are significant
differences. In particular, macros above are in some sense time-less, because
there is no limit on the number of steps necessary to perform their action. But
in a halting configuration this will finally happen.

5 A Completeness Result

In this section we show how a register machine is simulated by using the macros
introduced in the previous section, and hence we obtain the computational com-
pleteness of TPCU’s. To this aim, we introduce the notation NRTPCUn, for
any n ≥ 1, to denote the family of sets of natural numbers recognised by tissue
P systems with conditional uniport.

Theorem 1. NRTPCU24 = NRE.

Proof. Let M be a deterministic register machine. We will prove the assertion of
the theorem in the following way. First, we construct Π and we show that this
system simulates the behaviour of M . In the same time, we investigate all other
possible evolutions of Π and we show that only evolutions corresponding to the
simulation of M lead to a halting configuration of Π .

In what follows we show how an arbitrary incrementing instruction (p, A+, q)
of M is simulated. We mentioned before that we use macros defined in Section
4 as building blocks. We combine them as it is depicted in Figure 6. We number
cells and we indicate their number below them. We remark that rules and objects
of Π can be easily deduced from these pictures.

The incrementing instruction is simulated as follows. Signals (symbols) p and
Apq synchronise, after that Apq increments register A, and synchronises with
symbol q. After these actions q is exchanged with p, Apq returns to its place and
register A is incremented.

As we have already said, all incrementing instructions of M may be simulated
using the same graph structure because macros for different instructions may
share the same cells.

The case of a decrementing instruction (p, A−, q, s) is depicted on Figure 7
(we remark that all working symbols (D, s1, s2) will be indexed by the number
of the instruction). We number cells and we indicate their number below them.
Specifically, in order to simulate a decrementing instruction, signals p and D

(D indeed stands for Dpqs) synchronise and if D does not arrive in the output
cell 6 (we recall that it arrives there non-deterministically), then s1 will be kept
in an infinite computation (in cell 9). Hence this branch will not halt. In the
other branch of the computation, D arrives in the output cell 6 and if there
are symbols A present, then it will move further. We remark that cell 6 stores
counter symbols. Now, the symbol s1, depending on position of D will choose
the corresponding branch of the computation. In this way the zero check on

518 S. Verlan et al.

Fig. 6. Simulation of (p, A+, q)

register A is performed. We note, that finally all additional symbols return to
their original places. We remark that we use the same three cells (1, 2 and 7)
for both signal synchronisations in the upper left corner.

Like in the previous case the simulation of all decrementing instructions may
share the same graph. Moreover, the incrementing and incrementing graphical
representations have a common underlying graph (which is in fact the graph
corresponding to the decrementing enriched with some edges). The initial con-
figuration contains the symbol q0 at cell 1.

We stress once more that Π can be easily deduced from the graphical rep-
resentations corresponding to each instruction. From a structural point of view,
cell 1 contains the current state, cell 2 contains all states of the machine except
the current one. Cell 3 contains symbols Apq and Dpqs that are used to drive
the all simulation in Π of corresponding instructions from M . Cell 6 contains
unary values of all the registers. We also note that after expanding all macro-
instructions, system Π contains 24 cells.

For any configuration of M (q, An1

1 , . . . , Ank

k), there is a corresponding config-
uration of Π , where cell 1 contains q and cell 6 contains symbols An1

1 , . . . , Ank

k .
Then, in order to finish the proof we need to show that the simulation of M

is the only possible halting computation. Indeed, we observe that the computa-
tion is started when a symbol p corresponding to a state of M arrives in cell 1
(initially in cell 1 symbol q0 is present). Suppose, for simplicity, that there is
the following instruction of M : (p, A+, q). In this case, symbol p goes to cell 2
where all unused state symbols are kept. In the meanwhile symbol Apq goes to
cell 4 and drives the computation – first it increments register A and after that
synchronises with symbol q. At the end, symbol Apq returns to cell 2, while cell 1
contains q, hence corresponding instruction of M is simulated.

On Communication in Tissue P Systems: Conditional Uniport 519

Fig. 7. Simulation of (p, A−, q, s)

For the decrementing case, symbol p is synchronised with D which drives
the further computation. Therefore, at any moment, there is only one symbol
that triggers the further computation (leading to a halting configuration). Since
there is only one halting evolution, it corresponds to the simulation of M .

6 Discussion

In this paper a class of tissue P systems, called “with conditional uniport” or
TPCU’s, for short, is introduced. This model relies on simple communication
rules which move simple symbol objects between adjacent components either
freely or in the presence of another symbol object in one of these components.
It is proved that this model, although with these very simple rules, it is compu-
tationally complete: it can recognise all recursively enumerable sets of natural
numbers. In this respect, we also conjecture that, with some modifications in
the proof of Theorem 1, TPCU’s can be shown to be able to simulate non-
deterministic register machines. This could lead to a characterisation of the
family of recursively enumerable sets of natural numbers based on generative
TPCU’s which do not require an input multiset.

The idea of conditional communication is not completely new to the area of
membrane computing. For instance, the concept of activated membrane chan-
nels was previously introduced in [7], and P automata [6] already considered

520 S. Verlan et al.

rules which allow a multiset to enter a membrane only in presence of another
specific multiset inside that membrane. However, in these variants, “activators”
are defined as generic multisets of any size, and, in order to achieve the power
of Turing machines, activators of size at least two are always used. Thus, our
approach is closer to minimal symport/antiport [17] as it reports completeness
for systems with a “minimal” cooperation in the communication rules: activators
consists of one single object, and rules involve at most two objects. On the other
hand, with respect to results reported in [17], the completeness of conditional
uniport is obtained by using a higher number of cells and tissue P systems with
a complex graph structure. The optimality of this result is not known though,
and this opens the possibility for improvements on the number of cells.

In addition to the completness result the paper introduces a set of “blocks”
of tissue P system components using conditional uniport rules with a certain
behaviour - the synchronisation of the objects moving between components,
incrementing/decrementing the number of object symbols when a specific ’signal’
object occurs in the block. These constructions are useful in order to simplify
the proof of Theorem 1, but they might be considered as primitive components
that (maybe with some restrictions or modifications) are combined to produce
more powerful blocks. In our future works this approach will be investigated as
a modular way of building solutions to some problems. This proposal is very
relevant for investigations into modelling self-assembly phenomena by using P
systems and their variants [5], [8] as it shows a great suitability in this respect.

Acknowledgements

Marian Gheorghe and Francesco Bernardini are supported by the British Council
research contract PN 05.014/2006, Maurice Margenstern and Sergey Verlan are
funded by the Égide programme Alliance 0881UG. The authors are also grateful
to the anonymous reviewers for their comments and suggestions that allowed us
to improve this work.

References

1. The P systems web page. http://psystems.disco.unimib.it.
2. B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter. The Molec-

ular Biology of the Cell. Garland Publ. Inc., London, 4th edition, 2002.
3. A. Alhazov, Y. Rogozhin, and S. Verlan. Tissue P systems with symport/antiport

and minimal cooperation. to appear in International Journal of Foundations of
Computer Science, 2006.

4. F. Bernardini and M. Gheorghe. Cell communication in tissue P systems: Univer-
sality results. Soft Computing, 9(9):640–649, 2005.

5. F. Bernardini, M. Gheorghe, N. Krasnogor, and J. L. Giavitto. On self-assembly
in population P systems. In C.S Calude, M.J. Dinneen, Gh. Păun, M. J. Pérez-
Jiménez, and G. Rozenberg, editors, Uncoventional Computation. 4th International
Conference, UC 2005, Sevilla, Spain, October 2005, Proceedings, volume 3365 of
Lecture Notes in Computer Science, pages 46–57. Springer, 2005.

On Communication in Tissue P Systems: Conditional Uniport 521

6. E. Csuhaj-Varjú and G. Vaszil. P automata or purely communicating accepting
P systems. In Gh. Păun, G. Rozenberg, A. Salomaa, and C. Zandron, editors,
Membrane Computing. International Workshop, WMC-CdeA 02, Curtea de Argeş,
Romania, August 19-23, 2002. Revised Papers, volume 2597 of Lecture Notes in
Computer Science, pages 219–233. Springer, 2003.

7. R. Freund and M. Oswald. P systems with activated/prohibited membrane chan-
nels. In Gh. Păun, G. Rozenberg, A. Salomaa, and C. Zandron, editors, Membrane
Computing. International Workshop, WMC-CdeA 02, Curtea de Argeş, Romania,
August 19-23, 2002. Revised Papers, volume 2597 of Lecture Notes in Computer
Science, pages 261–269. Springer, 2003.

8. M. Gheorghe and Gh. Păun. Computing by self-assembly: DNA molecules, poly-
nominoes, cells. In N. Krasnogor, S. Gustafson, D. Pelta, and J. L. Verdegay,
editors, Systems Self-Assembly: Multidisciplinary Snapshots, Studies in Multidis-
ciplinarity. Elsevier, 2005. In press.

9. E. Goles and M. Margenstern. Universality of the chip-firing game. Theoretical
Computer Science, 172(1–2):91–120, 1997.

10. M. Margenstern. Two railway circuits: a universal circuit and an NP-difficult one.
Computer Science Journal of Moldova, 9:3–33, 2001.

11. C. Mart́ın-Vide, Gh. Păun, and G. Rozenberg. Membrane systems with carriers.
Theoretical Computer Science, 270(1–2):779–796, 2002.

12. M. Minsky. Finite and Infinite Machines. Prentice Hall, Englewood Cliffs, New
Jersey, 1967.

13. A. Păun and Gh. Păun. The power of communication: P systems with sym-
port/antiport. New Generation Computing, 20(3):295–305, May 2002.

14. Gh. Păun. Computing with membranes. Journal of Computer and System Sciences,
61(1):108–143, 2000.

15. Gh. Păun. Membrane Computing. An Introduction. Springer, Berlin, 2002.
16. W. Reisig. Petri Nets. An Introduction. Springer, Berlin, 1985.
17. Y. Rogozhin, A. Alhazov, and R. Freund. Computational power of sym-

port/antiport: History, advances and open problems. In R. Freund, G. Lojka,
M. Oswald, and Gh. Păun, editors, Pre-Proceeding of the 6th International Work-
shop on Membrane Computing (WMC6), pages 44–78. TU Wien, Vienna, July
18-21, 2005.

18. G. Rozenberg and A. Salomaa, editors. Handbook of Formal Languages, volume
1–3. Springer, 1997.

19. T. Toffoli and N. Margolus. Cellular automata machines. The MIT Press, Cam-
bridge, Mass., 1987.

