
Massively Parallel Algorithm for Evolution
Rules Application in Transition P System

Luis Fernández; Fernando Arroyo; Jorge A. Tejedor; Juan Castellanos

Grupo de Computación Natural
Universidad Politécnica de Madrid

{setillo; farroyo; jtejedor}@eui.upm.es; jcastellanos@fi.upm.es

Abstract. Within membrane computing research field, there are many
papers about software simulations and a few about hardware implemen-
tations. In both cases, algorithm for implementing membrane systems
in software or hardware that really take advantages for massively paral-
lelism, inherent to these models, are very important. During last years,
it can be found some of them in literature in which are implemented
some parallel software implementation. The work presented here deal
with a massively parallel algorithm for application of evolution rules in a
membrane. The algorithm is developed thinking about how minimize the
critical sections of evolution rules working with the membrane multiset
of objects and how this minimization make possible to really gain in the
implementation of real parallelism into programs code.

1 Introduction

P systems are a new computational model based on the membrane structure of
living cells [5]. This model has become, during last years, a powerful framework
for developing new ideas in theoretical computation. ”P systems with simple
ingredients (number of membranes, forms and sizes of rules, controls of using the
rules) are Turing complete” [6]. Moreover, P systems are a class of distributed,
massively parallel and non-deterministic systems. ”As there do not exist, up
to now, implementations in laboratories (neither in vitro or in vivo nor in any
electronical medium), it seems natural to look for software tools that can be
used as assistants that are able to simulate computations of P systems” [2].
”An overview of membrane computing software can be found in literature , or
tentative for hardware implementations , or even in local networks is enough to
understand how difficult is to implement membrane systems on digital devices”
[6].

Păun says: ”we avoid to plainly say that we have ’implementations’ of P
systems, because of the inherent non-determinism and the massive parallelism
of the basic model, features which cannot be implemented, at least in principle,
on the usual electronic computer -but which can be implemented on a dedicated,
reconfigurable, hardware [...] or on a local network” [6]. Thereby, there exists
many simulators in bibliography but ”the next generation of simulators may
be oriented to solve (at least partially) the problems of storage of information



338 L. Fernández et al.

and massive parallelism by using parallel language programming or by using
multiprocessor computers” [2].

The goal of this work is to present a massively parallel algorithm for the
application of evolution rules able to implement, that is not simulate, a transition
P system. This algorithm does not determine the utility nor applicability, nor
activity of evolution rules, nor the communication of the resulting multiset of
objects produced by the application of the evolution rules to their targets. It
determines the multiset of applied evolution rules on one evolution step and the
resting multiset of objects in a determined membrane.

2 Related Work

In [6], Păun says: ”there are several keywords which are genuinely proper to
membrane computing and which are of interest for many applications: distri-
bution, algoritmicity, [...], parallelism (a dream of computer science, a common
sense in biology)”. In this way, Ciobanu presents several related papers about
parallel implementation of P systems [1] [2], in which ”the rules are implemented
as threads. At the initialization phase, one thread is created for each rule. Rule
applications are performed in term of rounds” [2]. Again, the author recognize
that: ”since many rules are executing concurrently and they are sharing re-
sources, a mutual exclusion algorithm is necessary to ensure integrity” [1]. So,
”when more than one rule can be applied in the same conditions, the simula-
tor randomly picks one among the candidates” [2]. Hence, processes will have
pre-protocols and post-protocols for accessing to critical sections included into
their code in order to work under mutual exclusion. Then, each evolution rule
set associated to a membrane must access to the shared multiset of objects un-
der mutual exclusion; but different sets of evolution rules associated to different
membranes there are no competition among them because they are disjoint pro-
cesses. Hence, some degree of parallelism is achieved spite of having a thread for
each evolution rule. The implementation of evolution rules application will be
concurrent inside membranes but not massively parallel.

In conclusion, the obtained gain is that having r evolution rules in the mem-
brane, you have r − 1 less iterations in the parallel algorithm than in the se-
quential one; but, in spite of this, you also have to deal with the management of
the mutual exclusion. This situation is detailed in [4] which presents one process
architecture analysis, leading to different parallelism degrees. ”At this point,
there is to note an important aspect in processes synchronization, which is de-
terminant for the degree of parallelism of the process architecture: the critical
section granularity” [4]. Thereby, we have coarse-grained solution when almost
the whole application process of one evolution rule is under the critical section
and fined-grained solution otherwise. In the case of coarse-grained solution, con-
current execution of evolution rules inside a membrane offers a similar behavior
to a sequential implementation. Hence, coarse-grained critical sections decrease
the degree of parallelism to M/R×100% [4] where M is the number of membranes
and R the number of evolution rules. Hence, ”in the case in which driven evo-



Massively Parallel Algorithm for Evolution Rules Application 339

lution rules architecture will be the appropriate, always parallel algorithms for
application of evolution rules with fined-grained critical sections will be required.
Otherwise, this architecture will never be the candidate software architecture.”
[4].

On the other hand, in [3] is presented another sequential algorithm based on
maximal applicability benchmark (maximal number of times that the antecedent
of the rule input(r) is included into the multiset m) for application of active evo-
lution rules inside a membrane . The complexity for this algorithm, in the worst
case, is log2 N where N is the weight of the multiset of objects. ”The follow-
ing algorithm is based on considering the maximal applicability benchmark of
evolution rules over a multiset of objects. Process is as follows: once an evolu-
tion rule has been selected in a non deterministic manner, the rule is applied a
random number of times between 1 and the maximal applicability benchmark,
per iteration. It is expected that this higher consume of objects will accelerate
the end of execution” [3]. Hence, at each algorithm loop several applications of
the same evolution rule are performed. This sequential solution is, of course, a
minimal parallelism solution.

3 Massively Parallel Algorithm for Evolution Rules
Application

Here is presented a solution for massively parallel application of evolution rules.
The initial input is a set of active evolution rules for the membrane -the rules are
applicable and useful. The desired results are the complete multiset of applied
evolution rules and the resulting multiset of objects after rules application. In
order to achieve this, we propose one process per rule and one more controller
process that simulate the membrane containing the multiset of objects.

The general idea is that each rule proposes, in an independent manner, a
multiset to be consumed from the membrane multiset. Whether the addition of
all the proposed multiset by rules is bigger than the membrane multiset then
rules must to propose a different multiset to be consumed, otherwise, the result-
ing multiset obtained from addition of the proposed rules multiset is subtracted
from the membrane multiset. At this point, rules that are not applicable over
the new membrane multiset finishing their process execution till next evolution
step. The resulting active rules come back to the starting process point, and
again, propose a new multiset to be consumed by. This process is repeated until
no rule is applicable over the membrane multiset. This idea can be divided into
8 phases:

Phase 1. Membrane initialization. A probability for proposing multiset to be con-
sumed by rules is initialized. This phase is performed only by the controller
process, while rules are waiting to phase 2.

Phase 2. Evolution rules initialization. Each rule determines its applicability bench-
mark to its maximal applicability benchmark over the membrane multiset.
On the other hand, every rule is settled to the state in which rules can



340 L. Fernández et al.

propose. This phase is performed in parallel by every rule. The controller
process -membrane- waits until phase 5.

Phase 3. Multiset proposition. Each rule proposes in a randomly manner one multiset
of objects to be consumed from the membrane multiset. The proposed rule
multiset can be the empty multiset or the scalar product of its antecedent
by a natural number chosen in a random manner in between 1 and its appli-
cability benchmark. This phase is performed in parallel for every evolution
rule.

Phase 4. Proposed multiset addition. The addition of proposed multisets by rules is
performed two by two by neighborhood with respect to their number. For
example, rule number 1 with rule number 2, rule number 3 with rule number
4, and so on. After finishing this step, the resulting multisets are added two
by two again. For example, rule number 1 with rule number 3. And so on until
reaching one single multiset. This process develops a binary tree of additions
performed in parallel at each level of the tree. This phase is performed in
parallel for every rule.

Phase 5. Collision Management. Membrane analyzes the two different possibilities in
which the proposed multiset cannot consume symbols from the membrane
multiset. They are:
A. By excess. If the proposed multiset is not included in the membrane

multiset. In this case, the proposed multiset is not valid and then evolu-
tion rules must go into phase 3 in order to propose new multiset to be
consumed.

B. By defect. When the proposed multiset is the empty multiset, then the
membrane process will be randomly choosen and, after that a natural
number in between 1 and the maximal applicability benchmark for the
selected rule is generated. In this case, the proposed multiset will be
the scalar product of the antecedent of the rules by the chosen natural
number.

This phase is performed only by the membrane process while rules wait until
the phase 7 or come back to phase 3.

Phase 6. Symbols consume. Membrane subtract form its own multiset the proposed
multiset from phase 4 or from phase 5-B. Moreover, it indicates to evolution
rules that the proposed multiset is a valid multiset. Finally, it initializes its
active evolution rules data structure for the next loop in the algorithm. This
phase is performed only by the membrane process.

Phase 7. Checking rules halt. Each one of the evolution rules accumulates the number
of proposed application over the membrane multiset. Moreover, it computes
its maximal applicability benchmark over the new resting membrane multiset
for the next iteration and, if it is bigger than 0, they pass to the state in
which rules can propose and indicate it into the active evolution rules data
structure. Otherwise, they finish their execution. This phase is performed in
parallel by every evolution rule except into the access to the active evolution
rules data structure. Membrane is waiting until phase 8.

Phase 8. Checking membrane halt. Membrane checks if there exists some active rule
for the next loop. If so, it come back to phase 5, otherwise it finishes the



Massively Parallel Algorithm for Evolution Rules Application 341

PROCESS TYPE MEMBRANE

(1) Phase 1. Membrane initialization

(2) REPEAT

(3) REPEAT

(4) Phase 5. Collision management

(5) - By excess.

(6) - By defect.

(7) UNTIL NOT Collision;

(8) Phase 6. Symbols consume

(9) Phase 8. Checking membrane halt

(10) UNTIL End

PROCESS TYPE RULES

(1) Phase 2. Rules initialization

(2) REPEAT

(3) REPEAT

(4) Phase 3. Multisets proposition

(5) Phase 4. Proposed multisets addition

(6) UNTIL NOT Collision

(7) Phase 7. Checking rules halt

(8) UNTIL End

Table 1. Processes pseudo code

execution. This phase is performed only by the membrane and rules wait for
coming back to phase 2 -if they are active for next loop- of for finishing their
execution.

3.1 Synchronization design

Table 3.1 show in pseudo code the two different types of processes presented
here.

Both processes types are not disjoint and they must preserve the following
synchronizations:

A. Every evolution rule must wait for initialization until membrane initialization
finishes.

B. Each evolution rule must wait for their neighbor evolution rules to finish
their respective additions of proposed multisets by their neighbor evolution
rules.

C. Membrane must wait to start management collision until evolution rules
finish to accumulate the proposed multisets.

D. Every evolution rule must wait to start proposing new multiset until mem-
brane finishes collision management

E. Every evolution rule must wait to start checking halting condition until mem-
brane finishes multisets subtraction.



342 L. Fernández et al.

F. Every evolution rule must wait for the mutual exclusion to access into the
active evolution rule data structure and it can perform its register for the
next loop iteration.

G. Membrane must wait to checking halting condition until evolution rules finish
their corresponding checking for halting conditions.

H. Every evolution rule must wait to start to determine, it they finish their
execution or come back to propose a new multiset, until membrane halt
checking finishes.

3.2 Efficiency

The algorithm proposed here is measured in terms of the number of performed
operation over multisets. The complexity order for this algorithm, in the worst
case, is log2N×log2R, where N is the weight of the multiset and R is the number
of rules in the membrane. It is important to note that the theoretical complexity
order is worst than the theoretical complexity order for the sequential one. How-
ever, in practice, at each iteration of the loop, the new algorithm consumes a
higher number of symbols from the membrane multiset than the sequential one.
Moreover, the proposed algorithm consumes between 1 and R more symbols than
the sequential algorithm. Experimental data holds up this hypothesis. Below the
comparative results between two algorithms for evolution rules application: the
parallel one with course-grained solution presented in [1] versus the massively
parallel with fined-grained solution presented in this work. In order to obtain
the presented results a test set has been randomly generated (1000 different evo-
lution rules sets, applied to 1.000.000 multisets). Comparative results presented
here are the relation between the number of multiset operation performed by
both compared algorithms. First obtained result, attending to the average of all
possible situations, is that best behavior is shown by the massively parallel al-
gorithm reducing to 76.38% with respect to the other algorithm. Figure 1 shows
the obtained results from the average of the relation between both algorithms
related to the number of evolution rules without taken into account the two less
relevant parameters. This figure exhibits the penalty for the proposed algorithm
when the numbers of evolution rules are 1 and 2. However, in any other case the
benefits of the proposed algorithm are increasing. In the set of tests bounded to
10 evolution rules, a reduction of 47% in the number of multisets operation is
achieved in the massively parallel algorithm versus the parallel one.

4 Conclusions

This paper presents two different versions of a massively parallel algorithm for
evolution rules application in transition P systems. Both algorithms can apply
simultaneously several rules several times in the same membrane. Moreover, if
every needed condition is accomplished all the rules can be simultaneously ap-
plied in the whole P system. Both versions obtain empirical results better than
other algorithms than others present in literature, in particular those which do



Massively Parallel Algorithm for Evolution Rules Application 343

Fig. 1. Average relation between algorithms related to the number of evolution rules

not offer the massively parallel character. This kind of algorithms give a chance
to real implementation of P systems in front of simulations and partial approxi-
mations presented in others works. Hence, in devoted hardware architectures to
membrane systems, in which it is possible to have as many processors as evo-
lution rules plus one more for the membrane, it can be possible to have a real
100% parallelism degree for implementing membrane systems.

References

1. G. Ciobanu, G. Wenyuan, ”A P system running on a cluster of computers”, Pro-
ceedings of Membrane Computing. International Workshop, Tarragona (Spain).
Lecture Notes in Computer Science, vol 2933, Springer Verlag (2004), 123-150.

2. G. Ciobanu, M. Pérez-Jiménez, Gh. Păun, ”Applications of Membrane Comput-
ing”. Natural Computing Series, Springer Verlag, (October, 2006).

3. L. Fernández, F. Arroyo, J. Castellanos, J.A. Tejedor, I. Garćıa, ”New Algorithms
for Application of Evolution Rules based on Applicability Benchmarks”, BIO-
COMP06 International Conference on Bioinformatics and Computational Biology,
Las Vegas, (June, 2006) (accepted).

4. L. Fernández, F. Arroyo, I. Garćıa, J. Tejedor, ”Parallel Software Architectures
Analysis for Implementing Transition P System”. 8th Interantional Symposium on
Symbolic and Numeric Algorithms for Scientific Computing, Timisoara (Septem-
ber, 2006) (submitted).

5. Gh. Păun, ”Computing with Membranes”, Journal of Computer and System Sci-
ences, 61(2000), and Turku Center of Computer Science-TUCS Report n 208,
(1998).

6. Gh. Păun, ”Membrane computing. Basic ideas, results, applications”, Pre-
Proceedings of First International Workshop on Theory and Application of P Sys-
tems, Timisoara, (September , 2005), 1-8.


