
Expressing Control Mechanisms in P systems by

Rewriting Strategies ?

Oana Andrei1, Gabriel Ciobanu2,3, and Dorel Lucanu2

1 INRIA-LORIA, Nancy, France, Oana.Andrei@loria.fr
2 “A.I.Cuza” University of Iaşi, Faculty of Computer Science
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Abstract. In this paper we provide a semantics for membrane systems
given by rewriting strategies. We describe some control mechanisms in
membrane computing defined over sets of rules rather than individual
rules. Then we present the rewriting strategy formalism together with
its operational semantics. We use strategies to define the semantics of
the maximal parallel rewriting and priorities. Rewriting strategies are
not enough to express the membrane computation involving promoters
or inhibitors.

1 Control Mechanisms in Membrane Systems

In membrane systems (called also P systems) [8], the objects to evolve and the
rules governing this evolution are chosen in a nondeterministic way. Moreover,
this choice is exhaustive in the sense that no rule can be further applied in
the same evolution step: this is the maximal parallel rewriting. A global clock
is assumed, that is the same clock for all the regions of a membrane system.
At each tick of this clock, a current configuration of the system is transformed
into another one, and so defining a transition between the configurations of the
system. A sequence of transitions is called a computation. A computation is
halting if it reaches a halting configuration, one where no rules are applicable at
all.

We have various control mechanisms in membrane systems. They are inspired
by some biological entities. For instance, we have catalysts representing objects
which appear on both left-hand and right-hand sides of a rule. The catalysts di-
rectly participate in rules (but are not modified by them), and they are counted
as any other object such that the number of applications of a rule involving a
catalyst is as large as the number of copies of the catalyst. They can be used to
apply a certain rule in a sequential way, increasing the control of using the rule.
Another controlling mechanism is given by activators, a formal representation
of enzymes. An activator is related to a rule. The rules need activators to be
applied, so the parallelism of each rule is limited to the number of its activators.
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The activators can evolve in the same step (this is not possible for catalysts). An-
other control mechanism concerns the membrane permeability. Thus the mem-
branes can be dissolved by the so-called action delta (the objects of a dissolved
membrane remain in the region surrounding this membrane, while the rules are
removed; the skin membrane cannot be dissolved), or made impermeable by the
so-called action tau (no object can pass through such a membrane).

In this paper we refer to control mechanisms defined over sets of rules rather
than individual rules. Such mechanisms are given by priorities, promoters and
inhibitors. A priority relation among rules means that in each region we have a
partial order relation on the set of rules, and a rule can be chosen (to process a
multiset of objects) only if no rule of a higher priority is applicable in the same
region. Promoters and inhibitors formalize the reaction enhancing and reaction
prohibiting roles of various substances (molecules) present in cells. In membrane
systems, promoters and inhibitors are represented as multisets of objects asso-
ciated with given sets of rules. A rule from such a set of a given region can be
used only if all the promoting objects are present, and none of the inhibiting
objects is present in that region. From the generative point of view, there is a
symmetry between the two ideas: systems with promoters are equal in power to
systems with inhibitors, and they characterize the recursively enumerable sets
of natural numbers. Membrane systems with promoters/inhibitors achieve uni-
versal computations without using other features of membrane systems. From a
technical/efficiency point of view, there are differences: it is much easier to work
with promoters, the needed constructions are simpler, and if we have enough
promoters, then systems with only one membrane are already universal. An im-
portant feature of these universality results, both for promoters and inhibitors,
is that their proofs are obtained without using any other standard feature in
membrane computing [6].

Regarding the difference between promoters and catalysts, we can say that
the catalysts directly participate in rules, and they are counted as objects re-
quired by rules, and the number of rules applied in parallel is as large as the
number of catalysts. In the case of promoters, the presence of only one promoter
makes it possible to use a rule involving that promoter as many times as possi-
ble, without any restriction. A restricted number of catalysts can help to control
the number of application in parallel of the rules involving catalysts.

1.1 Membrane Systems with Priorities and Promoters

We present some examples of membrane systems implementing arithmetical op-
erations on numbers represented by the numbers of objects. More details about
other arithmetical operations on numbers represented by using unary and bi-
nary compact encodings are presented in [4]. In the examples presented here we
emphasize the use of priorities and promoters as control mechanisms in mem-
brane computing, presenting membrane systems with priorities and promoters
for multiplication.
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Figure 1 presents a membrane system Π1 with priorities for multiplication
of n (objects a) by m (objects b), the result being the number of objects d in
membrane 0.

Π1 = (V, µ, w0, (R0, ρ0), 0),

V = {a, b, d, e, u, v},

µ = [0]0,

w0 = anbmu,

R0 = {l1 : bv → dev, l2 : av → u, l3 : eu→ dbu, l4 : au→ v},

ρ0 = {l1 > l2, l3 > l4}.

Fig. 1. Multiplication with priorities

In this system we use the priority relation between rules; for instance bv →
dev has a higher priority than av → u, meaning the second rule is applied only
when the first one cannot be applied anymore. Initially only the rule au→ v can
be applied, generating a catalyst v which activates m times the rule bv → dev.
Then av → u consumes an a, and transform the catalyst v into a catalyst u.
Now eu→ dbu is applied m times, followed by another change of catalyst u into
a catalyst v by consuming an a (this is done by the rule au→ v). The procedure
is repeated until no object a is present within the membrane. It is easy to note
that each time when one object a is consumed, then m objects d are generated.

Figure 2 presents a P system Π2 with promoters for multiplication of n (ob-
jects a) by m (objects b), the result being the number of objects d in membrane
0. The object a is a promoter in the rule b → bd|a, i.e., this rule can only be
applied in the presence of object a. The available m objects b are used in order
to apply m times the rule b → bd|a in parallel; based on the availability of a

objects the rule au → u where u is a catalyst is applied in the same time and
consumes an a. The procedure is repeated until no object a is present within the
membrane. Note that each time when one object a is consumed, then m objects
d are generated.

Π2 = (V, µ, w0, R0, 0),

V = {a, b, d, u},

µ = [0]0,

w0 = anbmu,

R0 = {l1 : b→ bd|a, l2 : au→ u}.
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Fig. 2. Multiplication with promoters

The membrane systems for multiplication presented here do not require ex-
ponential space, and they do not require active membranes. Another interesting
feature is that the computation may continue after reaching a certain result, and
so the system acts as a P transducer [7]. Thus if initially there are n (objects a)
and m (objects b), the system evolves and produces n ·m objects d. Afterwards,
the user can inject more objects a and the system continues the computation
obtaining the same result as if the objects a are present from the beginning. For
example, if the user wishes to compute (n+k) ·m, it is enough to inject k objects
a at any point of the computation.

We have tested these examples by using the WebPS simulator described in [5];
it is available at http://psystems.ieat.ro.

2 Strategies and Tactics in Rewriting Systems

In general terms, a strategy is setting the objective(s) of a computation. On
the other hand, tactics indicate how we are supposed to reach the objectives. In
term rewriting systems, a strategy is an expression s involving rewriting rules and
certain strategy operators. The objectives of s are strategic transitions t

s
−→ t′,

where t and t′ are terms. A tactic of a strategic transition t
s
−→ t′ is a rewriting

sequence t = t0 → · · · → tn = t′ denoted shortly by t  t′ which applies the
rewriting rules according to a strategy s. We write t  n t′ when we want to
specify the length of the rewriting sequence.

We can think a rewriting strategy as an algorithm for defining a computation
step induced by a set of rules. In particular, the rewriting rules are atomic
strategies. For instance, computation of the arithmetical expressions involving
associative and commutative + and ∗, without parenthesis, could follow several
pathways:

2 + 3 ∗ 5→ 2 + 15→ 17

2 + 3 ∗ 5 = 2 + 5 ∗ 3→ 2 + 15→ 17

2 + 3 ∗ 5 = 3 ∗ 5 + 2→ 15 + 2→ 17

2 + 3 ∗ 5→ 5 ∗ 5→ 25

2 + 3 ∗ 5 = 2 + 5 ∗ 3 = 5 + 2 ∗ 3→ 5 + 6→ 11

. . .
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Only some of them are correct according to the usual arithmetical rules (for
the previous example, these are the pathways leading to 17). We aim to define

a strategy eval such that 2 + 3 ∗ 5
eval
−−−→ 17. In general, a rewriting strategy

language consists of expressions s constructed with rewriting rules and strategy
operators such that expr

s
−→ expr′. Here we use the strategy language defined in

[10]. In this language, eval can be expressed as repeat(multiply←+ add). This
means that we apply multiplication repeatedly until it is not possible anymore,
followed by addition.
In the sequel we present the strategy language.

Basic strategies. Each evolution rule ` : u → v defines a strategy operator

with the operational semantics given by the strategic transition w
`
−→ w′, where

w = u, w′ = v, and these equalities are modulo associativity, commutativity,
and unity. The only rewriting tactic corresponding to such a strategic transition
is w  1 w′, i.e., the rewriting of length one defined by the rule. The uniqueness
of the tactic is given by the fact the evolution rules have no variables.

Identity. We consider a strategy operator id with the operational semantics

given by w
id
−→ w, where w is a configuration. The only rewriting tactic corre-

sponding to such a strategic transition is w  0 w, i.e., the rewriting of length
zero.

Congruence. Each operation name (term constructor) defines a strategy operator
whose parameter-strategies are applied to its arguments. Since in membrane
systems we have only one operator, namely the associative and commutative
concatenation, we use a specific strategy operator mset with a variable number
of parameter-strategies. The operational semantics of the operator mset is

w1
s1−→ w′1 . . . wn

sn−→ w′n

w1 · · ·wn
mset(s1,...,sn)
−−−−−−−−−→ w′1 · · ·w

′
n

Remark 1. The concatenation operator has variable arity due to its associativ-
ity and unity laws. For instance, aabbb can be written as (aa, bbb), (a, a, b, b, b),

(a, ab, bb), and so on. The notation [assoc comm id: ε] intends to capture this
feature together with commutativity of . In order to avoid any confusion, we
prefer to denote this variadic operator by mset. Therefore we use mset(s1, . . . , sn)
instead of [assoc comm id: ε](s1, . . . , sn). The general case of congruence pro-
vided by operators with attributes is discussed in [3].

Example 1. Considering the rules in Figure 1, we have abu
mset(`4,id)
−−−−−−−→ bv because

au
`4−→ v, b

id
−→ b, abu = aub, and vb = bv.

If wi  w′i is a rewriting tactic of wi
si−→ w′i for i = 1, . . . , n, then w1 · · ·wn  

w′1 · · ·wn  · · · w′1 · · ·w
′
n is a tactic of w1 · · ·wn

mset(s1,...,sn)
−−−−−−−−−→ w′1 · · ·w

′
n. Since

the concatenation is associative and commutative, the rewriting tactics can be
combined in an arbitrary order.
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Sequential composition. s1; s2 applies s1 and, if it succeeds, then it applies s2.
The operational semantics of s1; s2 is given by

w
s1−→ w′ w′

s2−→ w′′

w
s1;s2

−−−→ w′′

If w  w′ is a rewriting tactic of w
s1−→ w′ and w′  w′′ is a rewriting tactic of

w′
s2−→ w′′, then w  w′  w′′ is a rewriting tactic of w

s1;s2

−−−→ w′′.

Example 2. Since abu
mset(`4,id)
−−−−−−−→ bv and bv

`1−→ dev, we have

abu
mset(`4,id);`1
−−−−−−−−→ dev.

Non-deterministic choice. s1 + s2 chooses between the strategies s1 and s2 such
that the chosen strategy succeeds. The operational semantics of s1 + s2 is given
by

w
s1−→ w′

w
s1+s2−−−−→ w′

w
s2−→ w′

w
s1+s2−−−−→ w′

If w  w′ is a rewriting tactic of w
s1−→ w′ or w

s2−→ w′, then w  w′ is a

rewriting tactic of w
s1+s2−−−−→ w′.

Example 3. Considering the evolution rules in Figure 2, we have abu
`1+`2−−−−→ bu

or abu
`1+`2−−−−→ abdu.

Failure. We say that a strategy s fails on w iff there is no w′ such that we cannot
have w

s
−→ w′. We write w

s
−→↑. In other words, w

s
−→↑ means that for any w′,

w
s
−→ w′ has no rewriting tactics.

Deterministic choice. s1←+s2 chooses the left argument first; the second strategy
is considered if the first strategy fails. The operational semantics of s1 ←+ s2 is
given by

w
s1−→ w′

w
s1←+s2−−−−→ w′

w
s1−→↑ w

s2−→ w′

w
s1←+s2−−−−→ w′

If w  w′ is a rewriting tactic of w
s1−→ w′, then w  w′ is a rewriting tactic of

w
s1←+s2−−−−→ w′. If for any w′, w

s1−→ w′ has no rewriting tactics, then any rewriting

tactic of w
s2−→ w′ is a a rewriting tactic of w

s1←+s2−−−−→ w′.

Example 4. Using again the evolution rules in Figure 1, we have abv
`1←+`2−−−−→ adev.

We cannot deduce abv
`1←+`2−−−−→ bu because `1 succeeds on abv. On the other hand,

`1 fails on adev and so we have adev
`1←+`2−−−−→ deu.
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Strategy definition. A strategy definition is an expression ϕ(z1, . . . , zn)
def
= s,

where any free variable in s belongs to {z1, . . . , zn}, and ϕ is a strategy identifier.
The operational semantics is given by

w
s[z1:=s1,...,zn:=sn]
−−−−−−−−−−−−→ w′

w
ϕ(s1,...,sn)
−−−−−−−→ w′

if ϕ(z1, . . . , zn)
def
= s

where s[z1 := s1, . . . , zn := sn] is the strategy expression obtained from s by
replacing the (free occurrences of the) variables zi with si. Each rewriting tactic

of w
s[z1:=s1,...,zn:=sn]
−−−−−−−−−−−−→ w′ is a rewriting tactic of w

ϕ(s1,...,sn)
−−−−−−−→ w′.

Fixpoint operator. The fixpoint operator µz(s) allows to define strategies that
repeatedly apply a certain strategy s. For instance, the strategy repeat, which
applies s as many times as possible, is defined as

repeat(s)
def
= µz((s; z)←+ id)

The operational semantics of µz(s) is given by

w
s[z:=µz(s)]
−−−−−−−→ w′

w
µz(s)
−−−→ w′

The fixpoint operator µ binds any occurrence of variable z in strategy s.

Each rewriting tactic of w
s[z:=µz(s)]
−−−−−−−→ w′ is a rewriting tactic of w

µz(s)
−−−→ w′.

3 Strategy Semantics of Control Mechanisms

In membrane systems, a computation step w V w′ can be presented as a transi-
tion from a configuration to another configuration according to a control mecha-
nism involving priorities or promoters. When we refer to a sequential implemen-
tation for membrane computing, such a computation is translated in sequential
rewritings. Such a sequential implementation based on rewritings is presented in
[1]. In this paper, it is natural to think about computations as objectives provided
by strategies, and sequential implementations as tactics of these strategies.

We investigate whether we can find a strategy s such that w V w′ iff w
s
−→ w′.

We describe the strategies for expressing control mechanisms defined over sets
of rules rather than individual rules. Such mechanisms are given by priorities,
promoters and inhibitors. However the most important computing engine is rep-
resented by the maximal parallel rewriting. We give a strategic semantics for
maximal parallel rewriting, as well as for maximal parallel rewriting with pri-
orities between rules. However we find that a more powerful mechanism than
strategies is needed to provide semantics for maximal rewriting with promoters
or inhibitors. A useful encoding of the rules can solve this problem, and finally
we can provide the semantics for maximal rewriting of membrane systems in-
volving promoters/inhibitors. The encoding can be used in a uniform way to
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provide the strategy semantics for simple maximal rewriting, maximal rewriting
of membrane systems with priorities, and maximal rewriting of systems with
promoters/inhibitors.

3.1 Strategic Semantics of Maximal Parallel Rewriting

Let R be a set of evolution rules and w a multiset of objects. If ` : u → v an

evolution rule in R, then w is `-irreducible if we cannot infer w
mset(`,id)
−−−−−−→ w′.

Moreover, w is R-irreducible if w is `-irreducible for all ` : u → v ∈ R. In other
words, w is `-irreducible iff there is no w′ such that w → w′ applying the rule
labelled by `. We say that w maximal parallel rewrites in w′, write w VR w′, iff
w = u1 · · ·unz, w′ = v1 · · · vnz, `i : ui → vi is a rule in R for i = 1, . . . , n, n > 0,
and z is R-irreducible.

Given a set of evolution rules R = {`i : ui → vi | 1 ≤ i ≤ n}, we define a
strategy

mpr
def
= µx(s1 + · · ·+ sn)

where si = mset(`i, x←+ id), for i = 1, . . . , n.

Since the definition of the strategy mpr is depending on R, we prefer to write it
in an equivalent form

mpr(R)
def
= mset(`1, mpr(R)←+ id) + · · ·+ mset(`n, mpr(R)←+ id)

If R = ∅, then w
mpr(∅)
−−−−→↑ for any w.

Theorem 1. Given a set R of evolution rules, then

w VR w′ iff w
mpr(R)
−−−−−→ w′.

Proof. We first assume that w VR w′. We have w = ui1 · · ·uik
z, w′=vi1 · · · vik

z,
rules `ij

: uij
→ vij

from R = {`i : ui → vi | i = 1, . . . , n} for j = 1, . . . , k,

k > 0, and z is R-irreducible. We show w
mpr(R)
−−−−−→ w′ by induction on k.

If k = 1, then the proof is:

z
mpr(R)
−−−−−→↑ z

id
−→ z

z
mpr(R)←+id
−−−−−−−→ z ui

`i−→ vi

uiz
si−→ viz

uiz
s1+···+sn
−−−−−−→ viz

uiz
mpr(R)
−−−−−→ viz

where i = i1.

If k > 1, then uik
z

mpr(R)
−−−−−→ vik

z as above, and u1 . . . uik−1

mpr
−−−→ v1 . . . vik−1

by inductive hypothesis. We get w
mpr(R)
−−−−−→ w′ by the definition of the fixpoint

operator, and by the fact that the concatenation in the left hand side does not
produce new reducible configurations.
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Conversely, if w
mpr(R)
−−−−−→ w′ then we show that w VR w′ by induction on the

depth of the proof tree. There are `i : ui → vi in R, wi and w′i such that

w = uiwi, w′ = viw
′
i, and wi

mpr(R)
−−−−−→ w′i, by definition of mpr(R). We have

wi VR w′i by inductive hypothesis, and we get w = uiwi VR viw
′
i = w′ by the

definition of V.

Example 5. If R consists of the rules `1 : ab → c and `2 : bb → d, then the

inference tree for aabbb
mpr
−−−→ cda is:

a
mpr(R)
−−−−−→↑ a

id
−→ a

a
mpr(R)←+id
−−−−−−−→ a bb

`2−→ d

abb
s2−→ da

abb
s1+s2−−−−→ da

abb
mpr(R)
−−−−−→ da

abb
mpr(R)←+id
−−−−−−−→ da ab

`1−→ c

aabbb
s1−→ cda

aabbb
s1+s2−−−−→ cda

aabbb
mpr(R)
−−−−−→ cda

3.2 Maximal Parallel Rewriting with Priorities

Let R be a set of evolution rules together with a partial order �. If ` � `′, then
we say that ` has a greater priority than `′. An evolution rule is applied in an
evolution step only if no rule of a higher priority can be applied.

Definition 1. Let R be a set of evolution rules together with a priority rela-

tion �. We say that w maximally parallel rewrites in w′ w.r.t. R, and write

w VR w′, iff w Vmax(R,w) w′, where max(R, w) is the set of evolution rules in

R of highest priority which are applicable to w.

Note that max(R, w) is a discrete partial ordered set, and consequently
w Vmax(R,w) w′ is defined as in 3.1. However, we cannot apply the strategy
mpr(max(R, w)) because it depends on configuration w. Usually a strategy is
independent of the configuration.

Definition 2. Let R be a set of evolution rules together with a priority relation

� such that {`i : ui → vi | i = 1, . . . , n} is the subset of the rules with maximal

priority. Then the strategy pri(R) is defined as follows:

pri(R)
def
= s1 + · · ·+ sn,

si = mset(`i, pri(filter(R, `i))←+ id)←+ pri(R \ {li})

for i = 1, . . . , n,

where filter(R, `i) is obtained from R by removing the rules having lower priority

than `i. If R = ∅, then w
pri(∅)
−−−−→↑.
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Example 6. Let us suppose that R consists of `1 : a→ c � `2 : b→ d.
We have:

pri(R)
def
= s1 (`1 is the only maximal element in R)

s1 = mset(`1, pri(`1)←+ id)←+ pri(`2)

pri(`1)
def
= mset(`1, pri(`1)←+ id)

pri(`2)
def
= mset(`2, pri(`2)←+ id)

The inference tree for aabV ccb is:

b
pri(`1)
−−−−→↑ b

id
−→ b

b
pri(`1)←+id
−−−−−−−→ b a

`1−→ c

ab
mset(`1,pri(`1)←+id)
−−−−−−−−−−−−→ cb

ab
pri(`1)
−−−−→ cb

ab
pri(`1)←+id
−−−−−−−→ cb a

`1−→ c

aab
mset(`1,pri(`1)←+id)
−−−−−−−−−−−−→ ccb

aab
mset(`1,pri(filter(R,`1))←+id)
−−−−−−−−−−−−−−−−−−−→ ccb

aab
pri(R)
−−−−→ ccb

Theorem 2. Given a set R of evolution rules together with a priority relation �,

w VR w′ iff w
pri(R)
−−−−→ w′.

Proof. (Sketch) The main idea is similar to that in the proof of Theorem 1.
The correct handling of the priorities is assured by the following facts:

– only rules with maximal priority are applied,
– once a rule is applied, all the rules having smaller priorities are removed from

the current set of rules by the operator filter , and
– if a rule with a maximal priority cannot be applied, then it is removed.

3.3 Maximal Parallel Rewriting with Promoters

An evolution rule with promoter is a rewrite rule of the form ` : u→ v|p, where
the promoter p does not necessarily occur in u. Such a rule can be applied in an
evolution step w V w′ only if w contains both u and p. A promoter cannot evolve
by the same rule it promotes, but it can evolve by another rule. The problem
we try to solve in this section is if the rules with promoters can be implemented
with strategies. Starting from the above intuitive definition, we may be tempted
to implement a rule with promoter by the following strategy:

mset(id(p), `, id)
where id(p) is the strategy corresponding to the rule id(p) : p → p; the role of
this rule is to test the presence of the promoter p. Note that a single occurrence
of the promoter can be used by more than one rule or even the promoter can
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be consumed by some other rule, and the presence of the promoters makes it
possible to use a rule from the associated set as many times as possible, without
any restriction. For instance, let R consist of the following rules with promoters:
`1 : aq → c|p and `2 : bp → d|q . Consider s a strategy applying the rules R

over abpq. If s applies first `1, then the information that we initially had the
promoter p is lost and it does not know that `2 can be applied. If s applies
first `2, then the information that we initially had the promoter q is lost and
it does not know that `1 can be applied. Therefore we claim that there is no
strategy expressed in terms of rules R and strategy operators which implements
the maximal rewriting with promoters. A more powerful mechanism is needed.
We show that an encoding together with the strategies over the translated rules
are enough for implementing the maximal rewriting with promoters.

Given a set R of evolution rules with or without promoters, we construct a set

R̂ of rewrite rules and a strategy prom(R̂) such that w VR w′ iff w
prom( bR)
−−−−−→ w′.

Let pset(R, w) denote the set of promoters occurring in w w.r.t. the set of rules

R. The set R̂ consists of the following rules:

– compute : w → (w, pset(R, w)),
– forget : w′(w, s)→ w′w, together with

– a rule ˆ̀ : w′(wu, s) → w′v(w, s) for each rule ` : u → v without promoter,
and

– a rule ˆ̀ : w′(wu, ps)→ w′v(w, ps) for each rule ` : u→ v|p with promoter,

where w′, w range over configurations, and s range over sets of promoters.
The rule compute stores the set of promoters occurring in w as the second
component of the pair and it remains unchanged during the application of the
evolution rules. This information is used by the rules with promoters: such a
rule is applied only if its promoter is present in the second component. Note
that the processed part lies in the front of the pair and it is not affected by the
next evolution rules applied in the current step; the evolution rules consumes
only from the first component of the pair.

Definition 3. We suppose that R = {`i : ui → vi | i = 1, . . . , n}, and let R̂ be

computed as above. Then the strategy prom(R̂) is

prom(R̂)
def
= compute; repeat(ˆ̀1 + · · ·+ ˆ̀

n); forget

For the example given above, R̂ consists of compute, forget, together with
ˆ̀
1 : w′(aqw, ps)→ w′c(w, ps) and ˆ̀

2 : w′(bpw, qs)→ w′d(w, ps).

The inference tree of abpq
prom( bR)
−−−−−→ cd is obtained as follows:

T1:

(abpq, pq)
ˆ̀
2−→ c(bp, pq)

(abpq, pq)
ˆ̀
1+ˆ̀

2−−−−→ c(bp, pq)

T2:
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c(bp, pq)
ˆ̀
2−→ cd(ε, pq)

c(bp, pq)
ˆ̀
1+ˆ̀

2−−−−→ cd(ε, pq) cd(ε, pq)
ˆ̀
1+ˆ̀

2−−−−→↑

c(bp, pq)
repeat(ˆ̀1+ˆ̀

2)
−−−−−−−−−→ cd(ε, pq)

T3:

abpq
compute
−−−−→ (abpq, pq)

T1 T2

(abpq, pq)
(ˆ̀1+ˆ̀

2);repeat(ˆ̀1+ˆ̀
2)

−−−−−−−−−−−−−−→ cd(ε, pq)

(abpq, pq)
repeat(ˆ̀1+ˆ̀

2)
−−−−−−−−−→ cd(ε, pq)

abpq
compute;repeat(ˆ̀1+ˆ̀

2)
−−−−−−−−−−−−−→ cd(ε, pq)

Finally,

T3 cd(ε, pq)
forget
−−−−→ cd

abpq
prom( bR)
−−−−−−→ cd

Theorem 3. Given a set R of evolution rules with promoters, then

w VR w′ iff w
prom( bR)
−−−−−→ w′.

Proof. (Sketch) w VR w′ iff (w, pset(R, w))
repeat(ˆ̀1+···+ˆ̀

n)
−−−−−−−−−−−→ (w′, pset(R, w)).

If w VR w′, then it follows that w = ui1 · · ·uik
z, w′ = vi1 · · · vik

z, either
`ij

: uij
→ vij

or `ij
: uij

→ vij
|p is a rule in R = {`i : ui → vi | i = 1, . . . , n} for

j = 1, . . . , k, k > 0, and z is R-irreducible. If `ij
: uij

→ vij
|p is a rule involving

a promoter p, then p occurs in w, and it belongs to pset(R, w). We prove that

w
prom( bR)
−−−−−→ w′ by induction on k

Conversely, if (w, pset(w))
repeat(ˆ̀1+···+ˆ̀

n)
−−−−−−−−−−−→ (w′, pset(R, w)), then we prove w VR

w′ by induction on the depth of the inference tree.

3.4 Maximal Parallel Rewriting with Inhibitors

An evolution rule with inhibitor is a rewrite rule of the form ` : u→ v|¬p. Such
a rule can be applied in an evolution step w V w′ only if the inhibitor is not
present in w.

We proceed in a similar way to that of promoters but taking in the rule
compute the complementary set of inhibitors occurring in w w.r.t. the whole set
of objects A, denoted by iset(A, w) instead of pset(R, w), and considering rules
with inhibitors instead of rules with promoters:

– compute : w → (w, iset(A, w)),
– forget : w′(w, s)→ w′w, together with

– a rule ˆ̀ : w′(wu, s) → w′v(w, s) for each rule ` : u → v without inhibitor,
and

– a rule ˆ̀ : w′(wu, ps)→ w′v(w, ps) for each rule ` : u→ v|¬p with inhibitor,



130 O. Andrei, G. Ciobanu, and D. Lucanu

where w′, w range over configurations, and s range over sets of inhibitors.

Definition 4. We suppose that R = {`i : ui → vi | i = 1, . . . , n}, and let R̂ be

computed as above. Then the strategy inhib(R̂) is

inhib(R̂)
def
= compute; repeat(ˆ̀1 + · · ·+ ˆ̀

n); forget

Theorem 4. Given a set R of evolution rules with inhibitors, then

w VR w′ iff w
inhib( bR)
−−−−−→ w′.

3.5 Maximal Parallel Rewriting with Promoters and Inhibitors

When we have rules involving both promotors and inhibitors, we encode a config-
uration by a triple (w, pset(R, w), iset(A, w)) in order to have information about

both promotors and inhibitors. The set R̂ includes the following rules:

– compute : w → (w, pset(R, w), iset(A, w)),
– forget : w′(w, s, s′)→ w′w, together with

– a rule ˆ̀ : w′(wu, s, s′) → w′v(w, s, s′) for each rule ` : u → v in R without
promoter or inhibitor,

– a rule ˆ̀ : w′(wu, ps, s′) → w′v(w, ps, s′) for each rule ` : u → v|p in R with
promoter, and

– a rule ˆ̀ : w′(wu, s, ps′)→ w′v(w, s, ps′) for each rule ` : u→ v|¬p in R with
inhibitor.

This encoding is general, and it can be used even if one or both sets of promotors
and inhibitors are empty.

Definition 5. We suppose that R = {`i : ui → vi | i = 1, . . . , n}, and let R̂ be

computed as above. Then the strategy prominhib(R̂) is

prominhib(R̂)
def
= compute; repeat(ˆ̀1 + · · ·+ ˆ̀

n); forget

Theorem 5. Given a set R of rules involving eventually promoters and in-

hibitors, then

w VR w′ iff w
prominhib( bR)
−−−−−−−−−→ w′.

4 Conclusion

The main contribution of the paper is given by the novel use of strategies and
tactics in defining the operational semantics of membrane systems. Another ap-
proach in defining the operational semantics of membrane systems is presented
in [2]. An important feature of these systems is that many parallel rules are ap-
plied in a single step, and there is a relationship between rules and resources. We
use strategies to describe the control mechanisms in membrane systems defined
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by sets of rules rather than individual rules, namely maximal parallel rewriting,
priorities, promoters and inhibitors. We do not know a similar approach relating
strategies to membrane computing.

We adapt the strategy language presented in [9], taking into consideration that:

– the configurations are defined by multisets of objects, and so it is not neces-
sary to use all the strategy operators defined in [9],

– we extend the strategy congruence operators for associative and commutative
operations,

– control mechanisms involving promoters and inhibitors require an encoding
of the configurations and more complex operations over them.

One of the challenges in membrane community is to derive a program-
ming paradigm inspired by membrane computing. Starting from some exam-
ples for arithmetical operations, we have remarked the importance of certain
control mechanisms which can play in membrane paradigm a similar role to
if-then-else, for and while instructions in imperative programming, for in-
stance. In this paper we investigate the possibility to define a membrane pro-
gramming paradigm by using an extended strategy language. Despite the fact
that maximal parallel rewriting and priorities are expressible by strategies, the
control mechanisms involving promoters and inhibitors require an encoding and
additional operations. We think that for these control mechanisms we need more
powerful specification tools.
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